Taking the Jiyang depression as an example, this paper discusses the control of the formation of lithological reservoir by surrounding rocks by integrated application of geological analysis, physical simulation, and t...Taking the Jiyang depression as an example, this paper discusses the control of the formation of lithological reservoir by surrounding rocks by integrated application of geological analysis, physical simulation, and the analysis of oil & gas accumulation mechanism. Geological statistical shows that the major burial depth and interval of lithological reservoirs in the Jiyang depression are related to the hydrocarbon generation in and expulsion from the Lower Tertiary source rocks and the time of the formation of most lithological reservoirs coincides with the peak of hydrocarbon generation and expulsion. The lithological traps located in the center of effective source rocks are propitious to high oil saturation than those located on the margin of effective source rocks. The hydrocarbon charge degree of the lithological reservoir has a positive correlation with the intensity of hydrocarbon expulsion from surrounding source rocks. Geological analyses and NMR experiments also show that the oil saturation of surrounding source rocks control the hydrocarbon potential of lithological traps, and a critical value for oil saturation of surrounding mudstone is required, that is, when the oil saturation of surrounding mudstone is lower than this critical value, no oil and gas accumulate in the lithological trap. The control of surrounding mudstone on the oil-bearing properties of lithological reservoirs is also analyzed by the mechanisms of hydrocarbon generation and expulsion as well as accumulation.展开更多
Based on the data of 44 samples of hydrocarbon source rocks in Nanpu No.3 buffed-hill region, the kerogen type is judged through the pyrolysis and microscopic identification. At the same time, organic matter maturity ...Based on the data of 44 samples of hydrocarbon source rocks in Nanpu No.3 buffed-hill region, the kerogen type is judged through the pyrolysis and microscopic identification. At the same time, organic matter maturity and hydrocarbon generation threshold are studied by using vitrinite reflectance, pyrolysis yield and hydrocarbon abundance. Meanwhile the hydrocarbon expulsion threshold is calculated. And the characteristics of organic hydrocarbon generation and expulsion are preliminarily revealed and evaluated. The result shows that the No.3 buffed-hill region has abundant hydrocarbon source rocks with high content of organic carbon. And the primary types of kerogen are II, and lI 2. The hydrocarbon source rocks which passed biochemistry, thermolysis and thermal cracking have developed into the mature-postmature phase of different extents. And plenty of oil and gas were expelled out. It is believed the depth of oil-generating window is 3 600 m and the depth of hydro- carbon-expulsion threshold is 4 100 m. The comprehensive analysis indicates that Nanpu No.3 burried-hill region has a certain condition to generate hydrocarbon which is very promising in oil exploration and thus can become an important exploration and development target next.展开更多
基金Supported by National Natural Science Fund 40472078 and the Project of "973 plan" G1999043310
文摘Taking the Jiyang depression as an example, this paper discusses the control of the formation of lithological reservoir by surrounding rocks by integrated application of geological analysis, physical simulation, and the analysis of oil & gas accumulation mechanism. Geological statistical shows that the major burial depth and interval of lithological reservoirs in the Jiyang depression are related to the hydrocarbon generation in and expulsion from the Lower Tertiary source rocks and the time of the formation of most lithological reservoirs coincides with the peak of hydrocarbon generation and expulsion. The lithological traps located in the center of effective source rocks are propitious to high oil saturation than those located on the margin of effective source rocks. The hydrocarbon charge degree of the lithological reservoir has a positive correlation with the intensity of hydrocarbon expulsion from surrounding source rocks. Geological analyses and NMR experiments also show that the oil saturation of surrounding source rocks control the hydrocarbon potential of lithological traps, and a critical value for oil saturation of surrounding mudstone is required, that is, when the oil saturation of surrounding mudstone is lower than this critical value, no oil and gas accumulate in the lithological trap. The control of surrounding mudstone on the oil-bearing properties of lithological reservoirs is also analyzed by the mechanisms of hydrocarbon generation and expulsion as well as accumulation.
文摘Based on the data of 44 samples of hydrocarbon source rocks in Nanpu No.3 buffed-hill region, the kerogen type is judged through the pyrolysis and microscopic identification. At the same time, organic matter maturity and hydrocarbon generation threshold are studied by using vitrinite reflectance, pyrolysis yield and hydrocarbon abundance. Meanwhile the hydrocarbon expulsion threshold is calculated. And the characteristics of organic hydrocarbon generation and expulsion are preliminarily revealed and evaluated. The result shows that the No.3 buffed-hill region has abundant hydrocarbon source rocks with high content of organic carbon. And the primary types of kerogen are II, and lI 2. The hydrocarbon source rocks which passed biochemistry, thermolysis and thermal cracking have developed into the mature-postmature phase of different extents. And plenty of oil and gas were expelled out. It is believed the depth of oil-generating window is 3 600 m and the depth of hydro- carbon-expulsion threshold is 4 100 m. The comprehensive analysis indicates that Nanpu No.3 burried-hill region has a certain condition to generate hydrocarbon which is very promising in oil exploration and thus can become an important exploration and development target next.