NAC domain proteins are plant-specific transcription factors known to play diverse roles in various plant developmental processes. In the present study, we performed the first comprehensive study of the NAC gene famil...NAC domain proteins are plant-specific transcription factors known to play diverse roles in various plant developmental processes. In the present study, we performed the first comprehensive study of the NAC gene family in Gossypium raimondii Ulbr., incorporating phylogenetic, chromosomal location, gene structure, conserved motif, and expression profiling analyses. We identified 145 NAC transcription factor (NAC-TF) genes that were phylogenetically clustered into 18 distinct subfamilies. Of these, 127 NAC-TF genes were distributed across the 13 chromosomes, 80 (55%) were preferentially retained duplicates located in both duplicated regions and six were located in triplicated chromosomal regions. The majority of NAC-TF genes showed temporal-, spatial-, and tissue-specific expression patterns based on tran- scriptomic and qRT-PCR analyses. However, the expression patterns of several duplicate genes were partially redundant, suggesting the occurrence of sub-functionalization during their evolution. Based on their genomic organization, we concluded that genomic duplications contributed significantly to the expansion of the NAC-TF gene family in G. raimondii. Comprehensive analysis of their expression profiles could provide novel insights into the functional divergence among members of the NAC gene family in G. raimondii.展开更多
High mammalian gene expression was obtained for more than twenty different proteins in different cell types by just a few laboratory scale stable gene transfections for each protein.The stable expression vectors were ...High mammalian gene expression was obtained for more than twenty different proteins in different cell types by just a few laboratory scale stable gene transfections for each protein.The stable expression vectors were constructed by inserting a naturally-occurring 1.006 kb or a synthetic 0.733 kb DNA fragment(including intron) of extremely GC-rich at the 5’ or/and 3’ flanking regions of these protein genes or their gene promoters.This experiment is the first experimental evidence showing that a non-coding extremely GC-rich DNA fragment is a super "chromatin opening element" and plays an important role in mammalian gene expression.This experiment has further indicated that chromatin-based regulation of mammalian gene expression is at least partially embedded in DNA primary structure,namely DNA GC-content.展开更多
LATERAL ORGAN BOUNDARIES DOMAIN(LBD)基因家族是在拟南芥中发现的高等植物所特有的一类基因,编码的蛋白中含有LATERAL ORGAN BOUNDARIES(LOB)结构域。LBD基因一般在侧生器官与茎尖分生组织的边界处、侧生器官的近轴面一侧的基部表达,...LATERAL ORGAN BOUNDARIES DOMAIN(LBD)基因家族是在拟南芥中发现的高等植物所特有的一类基因,编码的蛋白中含有LATERAL ORGAN BOUNDARIES(LOB)结构域。LBD基因一般在侧生器官与茎尖分生组织的边界处、侧生器官的近轴面一侧的基部表达,并呈现出在多种组织内特异性表达的特征,暗示该类基因可能在植物的多种发育过程中发挥功能。LBD蛋白结构中除含有上述LOB结构域以外,尚未发现其它已知功能的结构域的存在。目前,已经在拟南芥中发现43个LBD基因,而在玉米和水稻中各有35和43个LBD基因。根据LBD蛋白结构中是否含有亮氨酸拉链类似基序,将LBD基因分为两类:第一类(class I)LBD蛋白结构域中包含完整亮氨酸拉链基序;第二类(class II)LBD蛋白结构域中不含亮氨酸拉链基序。本文就LBD基因的结构以及它们对高等植物生长发育的影响、LBD基因和植物激素的关系、LBD基因与miRNA的关系进行了系统的总结。展开更多
基金supported by the National Natural Science Foundation of China(31000732)the National High Technology Research and Development Program of China (2013AA210100)
文摘NAC domain proteins are plant-specific transcription factors known to play diverse roles in various plant developmental processes. In the present study, we performed the first comprehensive study of the NAC gene family in Gossypium raimondii Ulbr., incorporating phylogenetic, chromosomal location, gene structure, conserved motif, and expression profiling analyses. We identified 145 NAC transcription factor (NAC-TF) genes that were phylogenetically clustered into 18 distinct subfamilies. Of these, 127 NAC-TF genes were distributed across the 13 chromosomes, 80 (55%) were preferentially retained duplicates located in both duplicated regions and six were located in triplicated chromosomal regions. The majority of NAC-TF genes showed temporal-, spatial-, and tissue-specific expression patterns based on tran- scriptomic and qRT-PCR analyses. However, the expression patterns of several duplicate genes were partially redundant, suggesting the occurrence of sub-functionalization during their evolution. Based on their genomic organization, we concluded that genomic duplications contributed significantly to the expansion of the NAC-TF gene family in G. raimondii. Comprehensive analysis of their expression profiles could provide novel insights into the functional divergence among members of the NAC gene family in G. raimondii.
文摘High mammalian gene expression was obtained for more than twenty different proteins in different cell types by just a few laboratory scale stable gene transfections for each protein.The stable expression vectors were constructed by inserting a naturally-occurring 1.006 kb or a synthetic 0.733 kb DNA fragment(including intron) of extremely GC-rich at the 5’ or/and 3’ flanking regions of these protein genes or their gene promoters.This experiment is the first experimental evidence showing that a non-coding extremely GC-rich DNA fragment is a super "chromatin opening element" and plays an important role in mammalian gene expression.This experiment has further indicated that chromatin-based regulation of mammalian gene expression is at least partially embedded in DNA primary structure,namely DNA GC-content.
文摘LATERAL ORGAN BOUNDARIES DOMAIN(LBD)基因家族是在拟南芥中发现的高等植物所特有的一类基因,编码的蛋白中含有LATERAL ORGAN BOUNDARIES(LOB)结构域。LBD基因一般在侧生器官与茎尖分生组织的边界处、侧生器官的近轴面一侧的基部表达,并呈现出在多种组织内特异性表达的特征,暗示该类基因可能在植物的多种发育过程中发挥功能。LBD蛋白结构中除含有上述LOB结构域以外,尚未发现其它已知功能的结构域的存在。目前,已经在拟南芥中发现43个LBD基因,而在玉米和水稻中各有35和43个LBD基因。根据LBD蛋白结构中是否含有亮氨酸拉链类似基序,将LBD基因分为两类:第一类(class I)LBD蛋白结构域中包含完整亮氨酸拉链基序;第二类(class II)LBD蛋白结构域中不含亮氨酸拉链基序。本文就LBD基因的结构以及它们对高等植物生长发育的影响、LBD基因和植物激素的关系、LBD基因与miRNA的关系进行了系统的总结。