Let a, b, c, r be fixed positive integers such that a^2 + b^2 = c^r, min(a, b, c, r) 〉 1 and 2 r. In this paper we prove that if a ≡ 2 (mod 4), b ≡ 3 (mod 4), c 〉 3.10^37 and r 〉 7200, then the equation a...Let a, b, c, r be fixed positive integers such that a^2 + b^2 = c^r, min(a, b, c, r) 〉 1 and 2 r. In this paper we prove that if a ≡ 2 (mod 4), b ≡ 3 (mod 4), c 〉 3.10^37 and r 〉 7200, then the equation a^x + b^y = c^z only has the solution (x, y, z) = (2, 2, r).展开更多
LET Z,N,Q be the sets of integers, positive integers and rational numbers, respectively. The solutions (x, y, m, n) of the exponential Diophantine equation X^2+2~m=y^n,x,y,m,n∈N,2y,n【2 (1)are connected with many que...LET Z,N,Q be the sets of integers, positive integers and rational numbers, respectively. The solutions (x, y, m, n) of the exponential Diophantine equation X^2+2~m=y^n,x,y,m,n∈N,2y,n【2 (1)are connected with many questions in number theory and combinatorial theory. In the recent fifty years, there were many papers concerned with the equation written by Ljunggren, Nagell, Brown, Toyoizumi and Cohn. In 1986, ref. [1] claimed that all solutions of (1) had been determined. However, we have not seen the proof so far. Therefore, the solution of (1) has not been found yet. In this note, using Baker’s method, we prove the following result.展开更多
In this paper, we prove that if p, q are distinct primes, (p,q)≡(1,7) (mod 12) and Legendres symbol pq=1 , then the equation 1+p a=2 bq c+2 dp eq f has only solutions of the form (a,b,c,d,e,f)=...In this paper, we prove that if p, q are distinct primes, (p,q)≡(1,7) (mod 12) and Legendres symbol pq=1 , then the equation 1+p a=2 bq c+2 dp eq f has only solutions of the form (a,b,c,d,e,f)=(t,0,0,0,t,0), where t is a non negative integer. We also give all solutions of a kind of generalized Ramanujan Nagell equations by using the theories of imaginary quadratic field and Pells equation.展开更多
基金Supported by the National Natural Science Foundation of China(No.10271104)the Guangdong Provincial Natural Science Foundation(No.011781)the Natural Science Foundation of the Education Department of Guangdong Province(No.0161)
文摘Let a, b, c, r be fixed positive integers such that a^2 + b^2 = c^r, min(a, b, c, r) 〉 1 and 2 r. In this paper we prove that if a ≡ 2 (mod 4), b ≡ 3 (mod 4), c 〉 3.10^37 and r 〉 7200, then the equation a^x + b^y = c^z only has the solution (x, y, z) = (2, 2, r).
文摘LET Z,N,Q be the sets of integers, positive integers and rational numbers, respectively. The solutions (x, y, m, n) of the exponential Diophantine equation X^2+2~m=y^n,x,y,m,n∈N,2y,n【2 (1)are connected with many questions in number theory and combinatorial theory. In the recent fifty years, there were many papers concerned with the equation written by Ljunggren, Nagell, Brown, Toyoizumi and Cohn. In 1986, ref. [1] claimed that all solutions of (1) had been determined. However, we have not seen the proof so far. Therefore, the solution of (1) has not been found yet. In this note, using Baker’s method, we prove the following result.
基金Supported by the National Natural Science Foundation of China(10271104)the Guangdong Provincial Natural Science Foundation(011781)the Natural Science Foundation of Education Department of Guangdong Province(0161)
文摘In this paper, we prove that if p, q are distinct primes, (p,q)≡(1,7) (mod 12) and Legendres symbol pq=1 , then the equation 1+p a=2 bq c+2 dp eq f has only solutions of the form (a,b,c,d,e,f)=(t,0,0,0,t,0), where t is a non negative integer. We also give all solutions of a kind of generalized Ramanujan Nagell equations by using the theories of imaginary quadratic field and Pells equation.