The number of traditionally excellent coastal lithologic nuclear power plants is limited.It is a trend to develop nuclear power plants on soil sites in inland areas.Therefore,the seismic safety and adaptability of non...The number of traditionally excellent coastal lithologic nuclear power plants is limited.It is a trend to develop nuclear power plants on soil sites in inland areas.Therefore,the seismic safety and adaptability of non-rock nuclear power plant(NPP)sites are the key concerns of nuclear safety researchers.Although the five site categories are clearly defined in the AP1000 design control documents,the effects of nuclear power five site conditions and soil nonlinearity on the seismic response characteristics of nuclear island buildings have not been systematically considered in previous related studies.In this study,targeting the AP1000 nuclear island structure as the research object,three-dimensional finite element models of a nuclear island structure at five types of sites(firm rock site(FR),soft rock site(SR),soft-to-medium soil site(SMS),upper bound soft-to-medium site(SMS-UB),and soft soil site(SS))are established.The partitioned analysis method of soil-structure interaction(PASSI)in the time-domain is used to investigate the effects of site hardness and nonlinearity on the acceleration,displacement,and acceleration response spectrum of the nuclear island structure under seismic excitation.The incremental equilibrium equation and explicit decoupling method are used to analyze the soil nonlinearity described by the Davidenkov model with simplified loading-reloading rules.The results show that,in the linear case,with the increase of site hardness,the peak ground acceleration(PGA)and the peak of acceleration response spectrum of the nuclear island structure increase except for the FR site,while the maximum displacement decreases.In nonlinear analysis,as the site hardness increases,the PGA,maximum displacement,and the peak of acceleration response spectrum of the nuclear island structure increase.The peak value of the acceleration response spectrum in the nonlinear case is greater than that in the linear case for FR,while smaller for SR and soil sites.The site nonlinearity reduces the peak values of the response spec展开更多
Many engineering applications need to analyse the system dynamics on the macro and micro level,which results in a larger computational effort.An explicit-implicit asynchronous step algorithm is introduced to solve the...Many engineering applications need to analyse the system dynamics on the macro and micro level,which results in a larger computational effort.An explicit-implicit asynchronous step algorithm is introduced to solve the structural dynamics in multi-scale both the space domain and time domain.The discrete FEA model is partitioned into explicit and implicit parts using the nodal partition method.Multiple boundary node method is adopted to handle the interface coupled problem.In coupled region,the implicit Newmark coupled with an explicit predictor corrector Newmark whose predictive wave propagates into the implicit mesh.During the explicit subcycling process,the variables of boundary nodes are solved directly by dynamics equilibrium equation.The dissipation energy is dynamically determined in accordance with the energy balance checking.A cantilever beam and a building two numerical examples are proposed to verify that the method can greatly reduce the computing time while maintaining a high accuracy.展开更多
基金National Natural Science Foundation of China under Grant Nos.51978337 and U2039209。
文摘The number of traditionally excellent coastal lithologic nuclear power plants is limited.It is a trend to develop nuclear power plants on soil sites in inland areas.Therefore,the seismic safety and adaptability of non-rock nuclear power plant(NPP)sites are the key concerns of nuclear safety researchers.Although the five site categories are clearly defined in the AP1000 design control documents,the effects of nuclear power five site conditions and soil nonlinearity on the seismic response characteristics of nuclear island buildings have not been systematically considered in previous related studies.In this study,targeting the AP1000 nuclear island structure as the research object,three-dimensional finite element models of a nuclear island structure at five types of sites(firm rock site(FR),soft rock site(SR),soft-to-medium soil site(SMS),upper bound soft-to-medium site(SMS-UB),and soft soil site(SS))are established.The partitioned analysis method of soil-structure interaction(PASSI)in the time-domain is used to investigate the effects of site hardness and nonlinearity on the acceleration,displacement,and acceleration response spectrum of the nuclear island structure under seismic excitation.The incremental equilibrium equation and explicit decoupling method are used to analyze the soil nonlinearity described by the Davidenkov model with simplified loading-reloading rules.The results show that,in the linear case,with the increase of site hardness,the peak ground acceleration(PGA)and the peak of acceleration response spectrum of the nuclear island structure increase except for the FR site,while the maximum displacement decreases.In nonlinear analysis,as the site hardness increases,the PGA,maximum displacement,and the peak of acceleration response spectrum of the nuclear island structure increase.The peak value of the acceleration response spectrum in the nonlinear case is greater than that in the linear case for FR,while smaller for SR and soil sites.The site nonlinearity reduces the peak values of the response spec
基金supported by the National Key Research and Development Program of China(2016YFB0201800)the National Natural Science Foundation of China(No.51475287 and No.11772192).
文摘Many engineering applications need to analyse the system dynamics on the macro and micro level,which results in a larger computational effort.An explicit-implicit asynchronous step algorithm is introduced to solve the structural dynamics in multi-scale both the space domain and time domain.The discrete FEA model is partitioned into explicit and implicit parts using the nodal partition method.Multiple boundary node method is adopted to handle the interface coupled problem.In coupled region,the implicit Newmark coupled with an explicit predictor corrector Newmark whose predictive wave propagates into the implicit mesh.During the explicit subcycling process,the variables of boundary nodes are solved directly by dynamics equilibrium equation.The dissipation energy is dynamically determined in accordance with the energy balance checking.A cantilever beam and a building two numerical examples are proposed to verify that the method can greatly reduce the computing time while maintaining a high accuracy.