Here we present experimental results of compressional wave velocity (Vp) of muscovite-biotite gneiss from Higher Himalayan Crystallines (HHC) at the temperature up to 950℃ and the pressure of 0.1―400 MPa. At 400 MPa...Here we present experimental results of compressional wave velocity (Vp) of muscovite-biotite gneiss from Higher Himalayan Crystallines (HHC) at the temperature up to 950℃ and the pressure of 0.1―400 MPa. At 400 MPa, when the temperature is lower than 600℃, Vp decreases linearly with increasing temperature at the rate of (Vp/T)p -4.43×10-4 km/s ℃. In the temperature range of 600―800℃, Vp drops significantly and the signal is degraded gradually due to the dehydration of muscovite and α-quartz softening. When the temperature rises from 800℃ to 875℃, Vp increases and the signals become clear again as a result of the temperature going through the β-quartz range. The experiments indicate that the duration has great influence on the experimental results when temperature is above the dehydration point of biotite. During the first 30 h at 950℃, the Vp decreases substantially from 5.9 to 5.4 km/s and the signal amplitude is attenuated by more than 80%. After the 30-h transition, the Vp and the amplitude of ultrasonic wave signals become steady. The decrease of Vp and attenuation of the signals at 950℃ are associated with the breakdown reactions of biotite. The experiments suggest that the breakdown of muscovite and/or quartz softening can contribute to the low seismic wave velocity in thickened quartz-rich felsic-crust such as what is beneath southern Tibet. Additionally, α-β quartz transition generates a measurable high seismic velocity zone, which provides a possibility of precisely constraining the temperature in the upper-middle continental crust. Our study also demonstrates that duration is a key factor to obtain credible experimental results.展开更多
基金Supported by Key Foundational Research and Development Program of China (Grant No.2004CB418405) the National Natural Science Foundation of China (Grant No. 40472113)
文摘Here we present experimental results of compressional wave velocity (Vp) of muscovite-biotite gneiss from Higher Himalayan Crystallines (HHC) at the temperature up to 950℃ and the pressure of 0.1―400 MPa. At 400 MPa, when the temperature is lower than 600℃, Vp decreases linearly with increasing temperature at the rate of (Vp/T)p -4.43×10-4 km/s ℃. In the temperature range of 600―800℃, Vp drops significantly and the signal is degraded gradually due to the dehydration of muscovite and α-quartz softening. When the temperature rises from 800℃ to 875℃, Vp increases and the signals become clear again as a result of the temperature going through the β-quartz range. The experiments indicate that the duration has great influence on the experimental results when temperature is above the dehydration point of biotite. During the first 30 h at 950℃, the Vp decreases substantially from 5.9 to 5.4 km/s and the signal amplitude is attenuated by more than 80%. After the 30-h transition, the Vp and the amplitude of ultrasonic wave signals become steady. The decrease of Vp and attenuation of the signals at 950℃ are associated with the breakdown reactions of biotite. The experiments suggest that the breakdown of muscovite and/or quartz softening can contribute to the low seismic wave velocity in thickened quartz-rich felsic-crust such as what is beneath southern Tibet. Additionally, α-β quartz transition generates a measurable high seismic velocity zone, which provides a possibility of precisely constraining the temperature in the upper-middle continental crust. Our study also demonstrates that duration is a key factor to obtain credible experimental results.