In a recent article [Commun. Theor. Phys. (Beijing, China) 43 (2005) 39], Xie et al. improved the extended tanh function method by introducing a generalized Riccati equation and its new solutions. Then they choose the...In a recent article [Commun. Theor. Phys. (Beijing, China) 43 (2005) 39], Xie et al. improved the extended tanh function method by introducing a generalized Riccati equation and its new solutions. Then they choose the Karamoto-Sivashinsky (KS) equation to illustrate their approach and obtain many exact solutions of the KS equation.So they claim that, by using their method, one not only can successfully recover the previously known formal solutions but also construct new and more general formal solutions for some nonlinear evolution equations. In this comment, we will show that the claim is incorrect.展开更多
For a class of mixed initial-boundary value problem for general quasilinear hyperbolic systems, this paper establishes the local exact boundary controllability with boundary controls only acting on one end. As an appl...For a class of mixed initial-boundary value problem for general quasilinear hyperbolic systems, this paper establishes the local exact boundary controllability with boundary controls only acting on one end. As an application, the authors show the local exact boundary controllability for a kind of nonlinear vibrating string problem.展开更多
In this paper,the variable cofficient KdV equation with dissipative loss and nonuniformity terms and the variable coefficient SG equation with nonuniformity term are studied. The exact solutions of the KdV and SG equa...In this paper,the variable cofficient KdV equation with dissipative loss and nonuniformity terms and the variable coefficient SG equation with nonuniformity term are studied. The exact solutions of the KdV and SG equations are obtained.In particular,the soliton solutions of two equations are found. Received November 25,1996.Revised June 30,1997.1991 MR Subject Classification:35Q53.展开更多
We consider a profound problem of two-point resistance in the resistor network with a null resistor edge and an arbitrary boundary,which has not been solved before because the Green's function technique and the Lapla...We consider a profound problem of two-point resistance in the resistor network with a null resistor edge and an arbitrary boundary,which has not been solved before because the Green's function technique and the Laplacian matrix approach are invalid in this case.Looking for the exact solutions of resistance is important but difficult in the case of the arbitrary boundary since the boundary is a wall or trap which affects the behavior of a finite network.In this paper,we give a general resistance formula that is composed of a single summation by using the recursion-transform method.Meanwhile,several interesting results are derived by the general formula.Further,the current distribution is given explicitly as a byproduct of the method.展开更多
The fractional calculus approach is introduced into the rheological constitutive model of a generalized second grade fluid. A constitutive model with fractional derivative is developed for the generalized second grade...The fractional calculus approach is introduced into the rheological constitutive model of a generalized second grade fluid. A constitutive model with fractional derivative is developed for the generalized second grade fluid. Unsteady Couette flow of the generalized second grade fluid is studied by using the method of the discrete inverse Laplace transform and generalized Mittag-Leffler function. And then an exact solution is obtained for this problem with arbitrary fractional derivative. This provides a new analytical tool for the study of viscoelastic fluid mechanics.展开更多
A method exactly determining an event horizon and its temperature in a nonstatic space-time is proposed.Using the generalised Tortoise coordinate,we give exact location of event horison and exact Hawking temperature f...A method exactly determining an event horizon and its temperature in a nonstatic space-time is proposed.Using the generalised Tortoise coordinate,we give exact location of event horison and exact Hawking temperature for a general spherically symmetric evaporating black hole.展开更多
To seek new infinite sequence soliton-like exact solutions to nonlinear evolution equations (NEE(s)), by developing two characteristics of construction and mechanization on auxiliary equation method, the second ki...To seek new infinite sequence soliton-like exact solutions to nonlinear evolution equations (NEE(s)), by developing two characteristics of construction and mechanization on auxiliary equation method, the second kind of elliptie equation is highly studied and new type solutions and Backlund transformation are obtained. Then (2+ l )-dimensional breaking soliton equation is chosen as an example and its infinite sequence soliton-like exact solutions are constructed with the help of symbolic computation system Mathematica, which include infinite sequence smooth soliton-like solutions of Jacobi elliptic type, infinite sequence compact soliton solutions of Jacobi elliptic type and infinite sequence peak soliton solutions of exponential function type and triangular function type.展开更多
This paper deals with some unsteady unidirectional transient flows of Oldroyd-B fluid in an annular pipe. The fractional calculus approach in the constitutive relationship model Oldroyd-B fluid is introduced and a gen...This paper deals with some unsteady unidirectional transient flows of Oldroyd-B fluid in an annular pipe. The fractional calculus approach in the constitutive relationship model Oldroyd-B fluid is introduced and a generalized Jeffreys model with the fractional calculus has been built. Exact solutions of some unsteady flows of Oldroyd-B fluid in an annular pipe are obtained by using Hankel transform and Laplace transform for fractional calculus. The following four problems have been studied: (1) Poiseuille flow due to a constant pressure gradient; (2) axial Couette flow in an annulus; (3) axial Couette flow in an annulus due to a longitudinal constant shear; (4) Poiseuille flow due to a constant pressure gradient and a longitudinal constant shear. The well-known solutions for Navier-Stokes fluid, as well as those corresponding to a Maxwell fluid and a second grade one, appear as limited cases of our solutions.展开更多
In this paper, the exact synchronization for a coupled system of wave equations with Dirichlet boundary controls and some related concepts are introduced. By means of the exact null controllability of a reduced couple...In this paper, the exact synchronization for a coupled system of wave equations with Dirichlet boundary controls and some related concepts are introduced. By means of the exact null controllability of a reduced coupled system, under certain conditions of compatibility, the exact synchronization, the exact synchronization by groups, and the exact null controllability and synchronization by groups are all realized by suitable boundary controls.展开更多
In this paper, the (G′/G)-expansion method is extended to solve fractional partial differential equations in the sense of modified Riemann-Liouville derivative. Based on a nonlinear fractional complex transformation,...In this paper, the (G′/G)-expansion method is extended to solve fractional partial differential equations in the sense of modified Riemann-Liouville derivative. Based on a nonlinear fractional complex transformation, a certain fractional partial differential equation can be turned into another ordinary differential equation of integer order. For illustrating the validity of this method, we apply it to the space-time fractional generalized Hirota-Satsuma coupled KdV equations and the time-fractional fifth-order Sawada-Kotera equation. As a result, some new exact solutions for them are successfully established.展开更多
In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzent...In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzentsov equation are constructed by the method of auxiliary equation with function transformation with aid of symbolic computation system Mathematica. The method is of important significance in seeking new exact solutions to the evolution equation with arbitrary nonlinear term.展开更多
Making use of a new generalized ans?tze and a proper transformation, we generalized the extended tanh-function method. Applying the generalized method with the aid of Maple, we consider some nonlinear evolution equati...Making use of a new generalized ans?tze and a proper transformation, we generalized the extended tanh-function method. Applying the generalized method with the aid of Maple, we consider some nonlinear evolution equations. As a result, we can successfully recover the previously known solitary wave solutions that had been found by the extended tanh-function method and other more sophisticated methods. More importantly, for some equations, we also obtain other new and more general solutions at the same time. The results include kink-profile solitary-wave solutions, bell-profile solitary-wave solutions, periodic wave solutions, rational solutions, singular solutions and new formal solutions.展开更多
A rectangular m × n resistor network with an arbitrary boundary is investigated, and a general resistance formula between two nodes on an arbitrary axis is derived by the Recursion-Transform(RT) method, a probl...A rectangular m × n resistor network with an arbitrary boundary is investigated, and a general resistance formula between two nodes on an arbitrary axis is derived by the Recursion-Transform(RT) method, a problem that has never been resolved before, for the Green's function technique and the Laplacian matrix approach are inapplicable to it. To have the exact solution of resistance is important but it is difficult to obtain under the condition of arbitrary boundary. Our result is directly expressed in a single summation and mainly composed of characteristic roots, which contain both finite and infinite cases. Further, the current distribution is given explicitly as a byproduct of the method. Our framework can be effectively applied to RLC networks. As an application to the LC network, we find that our formulation leads to the occurrence of resonances at h_1= 1-cosφ_i-sinφ_icotnφ_i. This somewhat curious result suggests the possibility of practical applications of our formulae to resonant circuits.展开更多
Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer alg...Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer algebraicsystem, we consider the generalized Zakharov-Kuzentsov equation with nonlinear terms of any order. As a result, wecan not only successfully recover the previously known travelling wave solutions found by existing various tanh methodsand other sophisticated methods, but also obtain some new formal solutions. The solutions obtained include kink-shapedsolitons, bell-shaped solitons, singular solitons, and periodic solutions.展开更多
In this paper,the authors define the strong (weak) exact boundary controllability and the strong (weak) exact boundary observability for first order quasilinear hyperbolic systems,and study their properties and the re...In this paper,the authors define the strong (weak) exact boundary controllability and the strong (weak) exact boundary observability for first order quasilinear hyperbolic systems,and study their properties and the relationship between them.展开更多
By using an improved projective Riccati equation method, this paper obtains several types of exact travelling wave solutions to the Benjamin Ono equation which include multiple soliton solutions, periodic soliton solu...By using an improved projective Riccati equation method, this paper obtains several types of exact travelling wave solutions to the Benjamin Ono equation which include multiple soliton solutions, periodic soliton solutions and Weierstrass function solutions. Some of them are found for the first time. The method can be applied to other nonlinear evolution equations in mathematical physics.展开更多
The separation of variables is employed to solve Hamiltonian dual form of eigenvalue problem for transverse free vibrations of thin plates, and formulation of the natural mode in closed form is performed. The closed-f...The separation of variables is employed to solve Hamiltonian dual form of eigenvalue problem for transverse free vibrations of thin plates, and formulation of the natural mode in closed form is performed. The closed-form natural mode satisfies the governing equation of the eigenvalue problem of thin plate exactly and is applicable for any types of boundary conditions. With all combinations of simplysupported (S) and clamped (C) boundary conditions applied to the natural mode, the mode shapes are obtained uniquely and two eigenvalue equations are derived with respect to two spatial coordinates, with the aid of which the normal modes and frequencies are solved exactly. It was believed that the exact eigensolutions for cases SSCC, SCCC and CCCC were unable to be obtained, however, they are successfully found in this paper. Comparisons between the present results and the FEM results validate the present exact solutions, which can thus be taken as the benchmark for verifying different approximate approaches.展开更多
Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach. This approach can also be applied to other nonlinear differential-difference...Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach. This approach can also be applied to other nonlinear differential-difference equations.展开更多
In this paper, the dimension of invariant subspaces admitted by nonlinear sys- tems is estimated under certain conditions. It is shown that if the two-component nonlinear vector differential operator F = (F1, F2) wi...In this paper, the dimension of invariant subspaces admitted by nonlinear sys- tems is estimated under certain conditions. It is shown that if the two-component nonlinear vector differential operator F = (F1, F2) with orders {k1, k2} (k1≥ k2) preserves the invariant subspace Wn1^1× Wn2^2 (n1 ≥ n2), then n1 - n2 ≤ k2, n1 ≤2(k1 + k2) + 1, where Wnq^q is the space generated by solutions of a linear ordinary differential equation of order nq (q = 1, 2). Several examples including the (1+1)-dimensional diffusion system and Ito's type, Drinfel'd-Sokolov-Wilson's type and Whitham-Broer-Kaup's type equations are presented to illustrate the result. Furthermore, the estimate of dimension for m-component nonlinear systems is also given.展开更多
文摘In a recent article [Commun. Theor. Phys. (Beijing, China) 43 (2005) 39], Xie et al. improved the extended tanh function method by introducing a generalized Riccati equation and its new solutions. Then they choose the Karamoto-Sivashinsky (KS) equation to illustrate their approach and obtain many exact solutions of the KS equation.So they claim that, by using their method, one not only can successfully recover the previously known formal solutions but also construct new and more general formal solutions for some nonlinear evolution equations. In this comment, we will show that the claim is incorrect.
基金Project supported by the Special Funds forMajor State Basic Research Projects ofChina.
文摘For a class of mixed initial-boundary value problem for general quasilinear hyperbolic systems, this paper establishes the local exact boundary controllability with boundary controls only acting on one end. As an application, the authors show the local exact boundary controllability for a kind of nonlinear vibrating string problem.
文摘In this paper,the variable cofficient KdV equation with dissipative loss and nonuniformity terms and the variable coefficient SG equation with nonuniformity term are studied. The exact solutions of the KdV and SG equations are obtained.In particular,the soliton solutions of two equations are found. Received November 25,1996.Revised June 30,1997.1991 MR Subject Classification:35Q53.
文摘We consider a profound problem of two-point resistance in the resistor network with a null resistor edge and an arbitrary boundary,which has not been solved before because the Green's function technique and the Laplacian matrix approach are invalid in this case.Looking for the exact solutions of resistance is important but difficult in the case of the arbitrary boundary since the boundary is a wall or trap which affects the behavior of a finite network.In this paper,we give a general resistance formula that is composed of a single summation by using the recursion-transform method.Meanwhile,several interesting results are derived by the general formula.Further,the current distribution is given explicitly as a byproduct of the method.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 10002003), the Foundation for University Key Teacher by the Ministry of Education of China and the JSPS postdoctoral fellowship for foreign researchers.
文摘The fractional calculus approach is introduced into the rheological constitutive model of a generalized second grade fluid. A constitutive model with fractional derivative is developed for the generalized second grade fluid. Unsteady Couette flow of the generalized second grade fluid is studied by using the method of the discrete inverse Laplace transform and generalized Mittag-Leffler function. And then an exact solution is obtained for this problem with arbitrary fractional derivative. This provides a new analytical tool for the study of viscoelastic fluid mechanics.
基金Supported by the National Natural Science Foundation of China.
文摘A method exactly determining an event horizon and its temperature in a nonstatic space-time is proposed.Using the generalised Tortoise coordinate,we give exact location of event horison and exact Hawking temperature for a general spherically symmetric evaporating black hole.
基金Supported by the Natural Natural Science Foundation of China under Grant No.10461006the Science Research Foundation of Institution of Higher Education of Inner Mongolia Autonomous Region,China under Grant No.NJZZ07031the Natural Science Foundation of Inner Mongolia Autonomous Region,China under Grant No.2010MS0111
文摘To seek new infinite sequence soliton-like exact solutions to nonlinear evolution equations (NEE(s)), by developing two characteristics of construction and mechanization on auxiliary equation method, the second kind of elliptie equation is highly studied and new type solutions and Backlund transformation are obtained. Then (2+ l )-dimensional breaking soliton equation is chosen as an example and its infinite sequence soliton-like exact solutions are constructed with the help of symbolic computation system Mathematica, which include infinite sequence smooth soliton-like solutions of Jacobi elliptic type, infinite sequence compact soliton solutions of Jacobi elliptic type and infinite sequence peak soliton solutions of exponential function type and triangular function type.
基金supported by the Project of China National 973 Program:Basic studies on formation mechanism and economic exploitation of coalbed gas reservoir(Grant No.2002CB211708)the Natural Science Foundation of Shandong Province of China(Grant No.Y2003F01).
文摘This paper deals with some unsteady unidirectional transient flows of Oldroyd-B fluid in an annular pipe. The fractional calculus approach in the constitutive relationship model Oldroyd-B fluid is introduced and a generalized Jeffreys model with the fractional calculus has been built. Exact solutions of some unsteady flows of Oldroyd-B fluid in an annular pipe are obtained by using Hankel transform and Laplace transform for fractional calculus. The following four problems have been studied: (1) Poiseuille flow due to a constant pressure gradient; (2) axial Couette flow in an annulus; (3) axial Couette flow in an annulus due to a longitudinal constant shear; (4) Poiseuille flow due to a constant pressure gradient and a longitudinal constant shear. The well-known solutions for Navier-Stokes fluid, as well as those corresponding to a Maxwell fluid and a second grade one, appear as limited cases of our solutions.
文摘In this paper, the exact synchronization for a coupled system of wave equations with Dirichlet boundary controls and some related concepts are introduced. By means of the exact null controllability of a reduced coupled system, under certain conditions of compatibility, the exact synchronization, the exact synchronization by groups, and the exact null controllability and synchronization by groups are all realized by suitable boundary controls.
文摘In this paper, the (G′/G)-expansion method is extended to solve fractional partial differential equations in the sense of modified Riemann-Liouville derivative. Based on a nonlinear fractional complex transformation, a certain fractional partial differential equation can be turned into another ordinary differential equation of integer order. For illustrating the validity of this method, we apply it to the space-time fractional generalized Hirota-Satsuma coupled KdV equations and the time-fractional fifth-order Sawada-Kotera equation. As a result, some new exact solutions for them are successfully established.
基金Project supported by the National Natural Science Foundation of China (Grant No 10461006), the High Education Science Research Program (Grant No NJ02035) of Inner Mongolia Autonomous Region, Natural Science Foundation of Inner Mongolia Autonomous Region (Grant No 2004080201103) and the Youth Research Program of Inner Mongolia Normal University (Grant No QN005023).
文摘In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzentsov equation are constructed by the method of auxiliary equation with function transformation with aid of symbolic computation system Mathematica. The method is of important significance in seeking new exact solutions to the evolution equation with arbitrary nonlinear term.
文摘Making use of a new generalized ans?tze and a proper transformation, we generalized the extended tanh-function method. Applying the generalized method with the aid of Maple, we consider some nonlinear evolution equations. As a result, we can successfully recover the previously known solitary wave solutions that had been found by the extended tanh-function method and other more sophisticated methods. More importantly, for some equations, we also obtain other new and more general solutions at the same time. The results include kink-profile solitary-wave solutions, bell-profile solitary-wave solutions, periodic wave solutions, rational solutions, singular solutions and new formal solutions.
基金Project supported by the Prophase Preparatory Project of Natural Science Foundation of Nantong University,China(Grant No.15ZY16)
文摘A rectangular m × n resistor network with an arbitrary boundary is investigated, and a general resistance formula between two nodes on an arbitrary axis is derived by the Recursion-Transform(RT) method, a problem that has never been resolved before, for the Green's function technique and the Laplacian matrix approach are inapplicable to it. To have the exact solution of resistance is important but it is difficult to obtain under the condition of arbitrary boundary. Our result is directly expressed in a single summation and mainly composed of characteristic roots, which contain both finite and infinite cases. Further, the current distribution is given explicitly as a byproduct of the method. Our framework can be effectively applied to RLC networks. As an application to the LC network, we find that our formulation leads to the occurrence of resonances at h_1= 1-cosφ_i-sinφ_icotnφ_i. This somewhat curious result suggests the possibility of practical applications of our formulae to resonant circuits.
基金The project supported by National Natural Science Foundation of China under Grant No.10072013the National Key Basic Research Development Program under Grant No.G1998030600
文摘Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer algebraicsystem, we consider the generalized Zakharov-Kuzentsov equation with nonlinear terms of any order. As a result, wecan not only successfully recover the previously known travelling wave solutions found by existing various tanh methodsand other sophisticated methods, but also obtain some new formal solutions. The solutions obtained include kink-shapedsolitons, bell-shaped solitons, singular solitons, and periodic solutions.
基金supported by the Basic Research Program of China(No. 2007CB814800)
文摘In this paper,the authors define the strong (weak) exact boundary controllability and the strong (weak) exact boundary observability for first order quasilinear hyperbolic systems,and study their properties and the relationship between them.
文摘By using an improved projective Riccati equation method, this paper obtains several types of exact travelling wave solutions to the Benjamin Ono equation which include multiple soliton solutions, periodic soliton solutions and Weierstrass function solutions. Some of them are found for the first time. The method can be applied to other nonlinear evolution equations in mathematical physics.
基金supported by the National Natural Science Foundation of China (10772014)
文摘The separation of variables is employed to solve Hamiltonian dual form of eigenvalue problem for transverse free vibrations of thin plates, and formulation of the natural mode in closed form is performed. The closed-form natural mode satisfies the governing equation of the eigenvalue problem of thin plate exactly and is applicable for any types of boundary conditions. With all combinations of simplysupported (S) and clamped (C) boundary conditions applied to the natural mode, the mode shapes are obtained uniquely and two eigenvalue equations are derived with respect to two spatial coordinates, with the aid of which the normal modes and frequencies are solved exactly. It was believed that the exact eigensolutions for cases SSCC, SCCC and CCCC were unable to be obtained, however, they are successfully found in this paper. Comparisons between the present results and the FEM results validate the present exact solutions, which can thus be taken as the benchmark for verifying different approximate approaches.
基金Project supported by the National Natural Science Foundation of China (Grant No 10461006), the Natural Science Foundation (Grant No 200408020103), the High Education Science Research Program (Grant No NJ02035) of Inner Mongolia, China and the Youth Foundation (Grant No QN004024) of Inner Mongolia Normal University, China.
文摘Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach. This approach can also be applied to other nonlinear differential-difference equations.
基金Project supported by the National Natural Science Foundation of China for Distinguished Young Scholars (No.10925104)the National Natural Science Foundation of China (No.11001240)+1 种基金the Doctoral Program Foundation of the Ministry of Education of China (No.20106101110008)the Zhejiang Provincial Natural Science Foundation of China (Nos.Y6090359,Y6090383)
文摘In this paper, the dimension of invariant subspaces admitted by nonlinear sys- tems is estimated under certain conditions. It is shown that if the two-component nonlinear vector differential operator F = (F1, F2) with orders {k1, k2} (k1≥ k2) preserves the invariant subspace Wn1^1× Wn2^2 (n1 ≥ n2), then n1 - n2 ≤ k2, n1 ≤2(k1 + k2) + 1, where Wnq^q is the space generated by solutions of a linear ordinary differential equation of order nq (q = 1, 2). Several examples including the (1+1)-dimensional diffusion system and Ito's type, Drinfel'd-Sokolov-Wilson's type and Whitham-Broer-Kaup's type equations are presented to illustrate the result. Furthermore, the estimate of dimension for m-component nonlinear systems is also given.