Based on the climatic data of 580 stations in China during 1956 and 2000, potential evapotranspiration are calculated using the Penman-Monteith Method recommended by FAO. The spatial and temporal distributions of the ...Based on the climatic data of 580 stations in China during 1956 and 2000, potential evapotranspiration are calculated using the Penman-Monteith Method recommended by FAO. The spatial and temporal distributions of the potential evapotranspiration over China and the temporal trends of the regional means for 10 major river basins and whole China are analyzed. Through a partial correlation analysis, the major climate factors which affect the temporal change of the potential evapotranspiration are analyzed. Major results are drawn as follows: 1) The seasonal and annual potential evapotranspiration for China as a whole and for most basins show decline tendencies during the past 45 years; for the Songhua River Basin there appears a slightly increasing trend. 2) Consequently, the annual potential evapotranspirations averaged over 1980-2000 are lower than those for the first water resources assessment (1956-1979) in most parts of China. Exceptions are found in some areas of Shandong Peninsula, western and middle basins of the rivers in Southwest China, Ningxia Hui Autonomous Region as well as the source regions of the Yangtze and Yellow rivers, which may have brought about disadvantages to the exploration and utilization of water resources. 3) Generally, sunshine duration, wind speed and relative humidity have greater impact on the potential evapotranspiration than temperature. Decline tendencies of sunshine duration and/or wind speed in the same period appear to be the major causes for the negative trend of the potential evapotranspiration in most areas.展开更多
To clarify aridity/humidity status of land surface is helpful for studying environmental background and regional differences, seeking causes of environmental change, and providing a scientific basis for researches on ...To clarify aridity/humidity status of land surface is helpful for studying environmental background and regional differences, seeking causes of environmental change, and providing a scientific basis for researches on climate change in the future. In this paper, the authors calcu- lated potential evapotranspiration of China using data from 616 meteorological stations during the period of 1971―2000 with the Penman-Monteith model recommanded by FAO in 1998. Vy- sothkii’s model was used to calculate aridity/humidity index. Then the calculated results of sta- tions were interpolated to land surface using ArcGIS. Results show that the annual average po- tential evapotranspiration is 400―1500 mm in the whole country, 600―800 mm in most parts of it; and 350―1400 mm in growing season (April―Octobor), which is nearly 200 mm less than the annual average. According to the aridity/humidity indexes of 1.0, 1.5 and 4.0, the aridity/humidity status is categorized to four types, namely, humid, subhumid, semiarid and arid. A majority of stations (76%) are more humid in growing season than the annual average. Results of com- prisons between the distribution map of aridity/humidity index with that of precipitation and vegetation indicate a good consistence of aridity/humidity status with natural environment. Therefore potential evapotranspiration calculated with modified FAO’s Penman-Monteith model in combination with aridity/humidity index that considers water balance can more reasonably explain the actual land surface aridity/humidity status of China.展开更多
Based on the meteorological data of 20 stations in the Hengduan Mountains region during 1961–2009, the annual and seasonal variation of potential evapotranspiration was analyzed in combination with the Penman-Monteit...Based on the meteorological data of 20 stations in the Hengduan Mountains region during 1961–2009, the annual and seasonal variation of potential evapotranspiration was analyzed in combination with the Penman-Monteith model. With the method of Spline interpolation under ArcGIS, the spatial distribution of potential evapotranspiration was presented to research the regional difference, and the correlation analysis was used to discuss the dominant factor affecting the potential evapotranspiration. The results indicated that the an-nual potential evapotranspiration showed a decreasing tendency since the 1960s, especially from the 1980s to 1990s, while it showed an increasing tendency since 2000. Regional potential evapotranspiration showed a rate of –0.17 mm a?1. Potential evapotranspiration in north, middle and south of the Hengduan Mountains exhibited decreasing trends over the studied period, and its regional trend was on the decline from southwest to northeast.展开更多
为促进黄土高原农业和生态环境可持续发展,基于2001—2020年MODIS蒸散产品和气象站点数据,利用作物缺水指数(crop water stress index,CWSI)、Theil-Sen Median趋势分析、Mann-Kendall检验和偏相关分析等方法,探讨了黄土高原干旱变化特...为促进黄土高原农业和生态环境可持续发展,基于2001—2020年MODIS蒸散产品和气象站点数据,利用作物缺水指数(crop water stress index,CWSI)、Theil-Sen Median趋势分析、Mann-Kendall检验和偏相关分析等方法,探讨了黄土高原干旱变化特征及其影响因素。结果表明:①年际上,2001—2020年黄土高原CWSI呈显著线性下降过程,下降速率为0.0058 a^(-1)(P<0.01)。干旱程度呈先减(2001—2018年)后增(2018—2020年)过程;②空间上,CWSI以减少趋势为主,显著减少趋势占区域总面积91.24%,其中青海、甘肃、宁夏、陕西南部地区CWSI下降速率较快;③黄土高原CWSI与气温以负偏相关关系为主,显著负偏相关占区域面积的7.78%,集中分布于青海东部、山西南部和河南北部;与降水以负偏相关关系为主,显著负偏相关占区域总面积60.88%,集中分布于黄土高原西南部和东部地区。气温升高背景下,降水增加促使黄土高原实际蒸发显著增加、潜在蒸发不显著减少,导致CWSI显著下降。研究结论认为降水是黄土高原CWSI下降的主要影响因素,年降水量增加减缓了黄土高原干旱趋势。展开更多
Drylands are among those regions most sensitive to climate and environmental changes and human-induced perturbations.The most widely accepted definition of the term dryland is a ratio,called the Surface Wetness Index(...Drylands are among those regions most sensitive to climate and environmental changes and human-induced perturbations.The most widely accepted definition of the term dryland is a ratio,called the Surface Wetness Index(SWI),of annual precipitation to potential evapotranspiration(PET)being below 0.65.PET is commonly estimated using the Thornthwaite(PET Th)and Penman–Monteith equations(PET PM).The present study compared spatiotemporal characteristics of global drylands based on the SWI with PET Th and PET PM.Results showed vast differences between PET Th and PET PM;however,the SWI derived from the two kinds of PET showed broadly similar characteristics in the interdecadal variability of global and continental drylands,except in North America,with high correlation coefficients ranging from 0.58 to 0.89.It was found that,during 1901–2014,global hyper-arid and semi-arid regions expanded,arid and dry sub-humid regions contracted,and drylands underwent interdecadal fluctuation.This was because precipitation variations made major contributions,whereas PET changes contributed to a much lesser degree.However,distinct differences in the interdecadal variability of semi-arid and dry sub-humid regions were found.This indicated that the influence of PET changes was comparable to that of precipitation variations in the global dry–wet transition zone.Additionally,the contribution of PET changes to the variations in global and continental drylands gradually enhanced with global warming,and the Thornthwaite method was found to be increasingly less applicable under climate change.展开更多
Potential evapotranspiration(ET_0) is vital for hydrologic cycle and water resource assessments as well as crop water requirement and irrigation demand assessments. The Beijing-Tianjin-Hebei region(Jing-Jin-Ji)–an im...Potential evapotranspiration(ET_0) is vital for hydrologic cycle and water resource assessments as well as crop water requirement and irrigation demand assessments. The Beijing-Tianjin-Hebei region(Jing-Jin-Ji)–an important, large, regional, economic community in China has experienced tremendous land use and land cover changes because of urbanisation and ecological restoration, affecting the hydrologic cycle and water resources of this region. Therefore, we analysed ET_0 in this region using climate data from 22 meteorological stations for the period 1991–2015 to understand this effect. Our findings show that ET_0 increased significantly at a rate of 7.40 mm per decade for the region. Based on the major land use type surrounding them, the meteorological stations were classified as urban, farmland, and natural stations using the 2015 land use dataset. The natural stations in the northern mountainous area showed a significant increase in ET_0, whereas most urban and farmland stations in the plain area showed a decrease in ET_0, with only a few of the stations showing an increase. Based on the different ET_0 trends for different land use types, these stations can be ranked as follows: urban stations(trend value:-4.663 to-1.439) > natural stations(trend value: 2.58 to 3.373) > farmland stations(trend value:-2.927 to-0.248). Our results indicate that land use changes affect meteorological parameters, such as wind speed and sunshine duration, which then lead to changes in ET_0. We noted that wind speed was the dominant parameter affecting ET_0 at all the natural stations, and wind speed and sunshine duration were the dominant parameters affecting ET_0 at most of the urban stations. However, the main controlling parameters affecting ET_0 at the farmland stations varied. These results present a scope for understanding land use impact on ET_0, which can then be applied to studies on sustainable land use planning and water resource management.展开更多
基金农业部农业结构调整重大技术研究专项"华北粮食主产区农业环境监测评价体系研究"Challenge Program on Water & Food"Conservation agriculture for the dry-land areas of the Yellow River Basin"科技部科研院所社会公益研究专项(2004DIB3J095)资助
基金Chinese Ministry of Water Resources: Special Study to Water Resources Comprehensive Planning of China Ministry of Science and Technology of China, No.2001BA611B, Sida and STINT
文摘Based on the climatic data of 580 stations in China during 1956 and 2000, potential evapotranspiration are calculated using the Penman-Monteith Method recommended by FAO. The spatial and temporal distributions of the potential evapotranspiration over China and the temporal trends of the regional means for 10 major river basins and whole China are analyzed. Through a partial correlation analysis, the major climate factors which affect the temporal change of the potential evapotranspiration are analyzed. Major results are drawn as follows: 1) The seasonal and annual potential evapotranspiration for China as a whole and for most basins show decline tendencies during the past 45 years; for the Songhua River Basin there appears a slightly increasing trend. 2) Consequently, the annual potential evapotranspirations averaged over 1980-2000 are lower than those for the first water resources assessment (1956-1979) in most parts of China. Exceptions are found in some areas of Shandong Peninsula, western and middle basins of the rivers in Southwest China, Ningxia Hui Autonomous Region as well as the source regions of the Yangtze and Yellow rivers, which may have brought about disadvantages to the exploration and utilization of water resources. 3) Generally, sunshine duration, wind speed and relative humidity have greater impact on the potential evapotranspiration than temperature. Decline tendencies of sunshine duration and/or wind speed in the same period appear to be the major causes for the negative trend of the potential evapotranspiration in most areas.
基金supported by the National Natural Science Foundation of China(Grant No.40171040)the Knowledge Innovation Project of the Institute of Geographical Sciences and Natural Resources Research,CAS(Grant No.CXIOG-A02-03)the Director Foundation of Knowledge Innovation Project of CAS(Grant No.SJ10G-A00-06).
文摘To clarify aridity/humidity status of land surface is helpful for studying environmental background and regional differences, seeking causes of environmental change, and providing a scientific basis for researches on climate change in the future. In this paper, the authors calcu- lated potential evapotranspiration of China using data from 616 meteorological stations during the period of 1971―2000 with the Penman-Monteith model recommanded by FAO in 1998. Vy- sothkii’s model was used to calculate aridity/humidity index. Then the calculated results of sta- tions were interpolated to land surface using ArcGIS. Results show that the annual average po- tential evapotranspiration is 400―1500 mm in the whole country, 600―800 mm in most parts of it; and 350―1400 mm in growing season (April―Octobor), which is nearly 200 mm less than the annual average. According to the aridity/humidity indexes of 1.0, 1.5 and 4.0, the aridity/humidity status is categorized to four types, namely, humid, subhumid, semiarid and arid. A majority of stations (76%) are more humid in growing season than the annual average. Results of com- prisons between the distribution map of aridity/humidity index with that of precipitation and vegetation indicate a good consistence of aridity/humidity status with natural environment. Therefore potential evapotranspiration calculated with modified FAO’s Penman-Monteith model in combination with aridity/humidity index that considers water balance can more reasonably explain the actual land surface aridity/humidity status of China.
基金National Basic Research Program of China,No.2010CB951404National Basic Research Program of China,No.2007CB411501+5 种基金 National Natural Science Foundation of China (NSFC),No.40971019 No.90511007 No.40801028 NSFC,No.J0630966 Major Directionality Program of the Chinese Academy of Sciences,No.KZCXZ-YW-317 West Light Foundation of the Chinese Academy of Sciences,No.O828A11001
文摘Based on the meteorological data of 20 stations in the Hengduan Mountains region during 1961–2009, the annual and seasonal variation of potential evapotranspiration was analyzed in combination with the Penman-Monteith model. With the method of Spline interpolation under ArcGIS, the spatial distribution of potential evapotranspiration was presented to research the regional difference, and the correlation analysis was used to discuss the dominant factor affecting the potential evapotranspiration. The results indicated that the an-nual potential evapotranspiration showed a decreasing tendency since the 1960s, especially from the 1980s to 1990s, while it showed an increasing tendency since 2000. Regional potential evapotranspiration showed a rate of –0.17 mm a?1. Potential evapotranspiration in north, middle and south of the Hengduan Mountains exhibited decreasing trends over the studied period, and its regional trend was on the decline from southwest to northeast.
基金sponsored by the National K&D Program of China (Grant No. 2016YFA0600404)the China Special Fund for Meteorological Research in the Public Interest (Grant No. GYHY201106028 and GYHY2015060011)+1 种基金the National Natural Science Foundation of China (Grant No. 41530532)the Jiangsu Collaborative Innovation Center for Climate Change
文摘Drylands are among those regions most sensitive to climate and environmental changes and human-induced perturbations.The most widely accepted definition of the term dryland is a ratio,called the Surface Wetness Index(SWI),of annual precipitation to potential evapotranspiration(PET)being below 0.65.PET is commonly estimated using the Thornthwaite(PET Th)and Penman–Monteith equations(PET PM).The present study compared spatiotemporal characteristics of global drylands based on the SWI with PET Th and PET PM.Results showed vast differences between PET Th and PET PM;however,the SWI derived from the two kinds of PET showed broadly similar characteristics in the interdecadal variability of global and continental drylands,except in North America,with high correlation coefficients ranging from 0.58 to 0.89.It was found that,during 1901–2014,global hyper-arid and semi-arid regions expanded,arid and dry sub-humid regions contracted,and drylands underwent interdecadal fluctuation.This was because precipitation variations made major contributions,whereas PET changes contributed to a much lesser degree.However,distinct differences in the interdecadal variability of semi-arid and dry sub-humid regions were found.This indicated that the influence of PET changes was comparable to that of precipitation variations in the global dry–wet transition zone.Additionally,the contribution of PET changes to the variations in global and continental drylands gradually enhanced with global warming,and the Thornthwaite method was found to be increasingly less applicable under climate change.
基金National Key Research and Development Program of China,No.2016YFC0401407National Natural Science Foundation of China,No.51379216+1 种基金National Science Foundation for Distinguished Young Scholars,No.51625904International Science&Technology Cooperation Program of China,No.2016YFE0102400
文摘Potential evapotranspiration(ET_0) is vital for hydrologic cycle and water resource assessments as well as crop water requirement and irrigation demand assessments. The Beijing-Tianjin-Hebei region(Jing-Jin-Ji)–an important, large, regional, economic community in China has experienced tremendous land use and land cover changes because of urbanisation and ecological restoration, affecting the hydrologic cycle and water resources of this region. Therefore, we analysed ET_0 in this region using climate data from 22 meteorological stations for the period 1991–2015 to understand this effect. Our findings show that ET_0 increased significantly at a rate of 7.40 mm per decade for the region. Based on the major land use type surrounding them, the meteorological stations were classified as urban, farmland, and natural stations using the 2015 land use dataset. The natural stations in the northern mountainous area showed a significant increase in ET_0, whereas most urban and farmland stations in the plain area showed a decrease in ET_0, with only a few of the stations showing an increase. Based on the different ET_0 trends for different land use types, these stations can be ranked as follows: urban stations(trend value:-4.663 to-1.439) > natural stations(trend value: 2.58 to 3.373) > farmland stations(trend value:-2.927 to-0.248). Our results indicate that land use changes affect meteorological parameters, such as wind speed and sunshine duration, which then lead to changes in ET_0. We noted that wind speed was the dominant parameter affecting ET_0 at all the natural stations, and wind speed and sunshine duration were the dominant parameters affecting ET_0 at most of the urban stations. However, the main controlling parameters affecting ET_0 at the farmland stations varied. These results present a scope for understanding land use impact on ET_0, which can then be applied to studies on sustainable land use planning and water resource management.