The water-gas shift(WGS) reaction is an essential industrial reaction for upgrading hydrogen(H2) by removing carbon monoxide(CO), while highly efficient platinum(Pt)-based catalysts for WGS with simultaneously high ac...The water-gas shift(WGS) reaction is an essential industrial reaction for upgrading hydrogen(H2) by removing carbon monoxide(CO), while highly efficient platinum(Pt)-based catalysts for WGS with simultaneously high activity and stability are still yet to be developed due to the poisoning issue during the reaction. Herein, we report on the porous PtPb peanut nanocrystals(porous PtPb PNCs) and porous PtPb octahedron nanocrystals(porous PtPb ONCs) with controllable ratios of Pt/Pb as extremely active and stable catalysts towards WGS reaction. It exhibits the composition-dependent activity with porous PtPb PNCs-40/ZnO being the most active for WGS to H_2, 16.9 times higher than that of the commercial Pt/C. The porous PtPb PNCs-40/ZnO also display outstanding durability with barely activity decay and negligible structure and composition changes after ten successive reaction cycles. X-ray photoelectron spectroscopy(XPS) results reveal that the suitable binding energy of Pt 4f_(7/2) and the high ratio of Pt(0)to Pt(II) in porous PtPb PNCs/ZnO and porous PtPb ONCs/ZnO are crucial for the enhanced WGS activity.The CO stripping results indicate the optimized CO adsorption strength on the Pt surface ensure the excellent WGS activity and the outstanding durability. The present work demonstrates an important advance in tuning the porous metal nanomaterials as highly efficient and durable catalysts for catalysis,energy conversion and beyond.展开更多
We investigate the effects of etching gases on the synthesis of nano crystalline diamonds grown on silicon substrate at the substrate temperature of 550℃ and the reaction pressure of 4 kPa by hot filament chemical va...We investigate the effects of etching gases on the synthesis of nano crystalline diamonds grown on silicon substrate at the substrate temperature of 550℃ and the reaction pressure of 4 kPa by hot filament chemical vapor deposition method, in which CH4 and H2 act as a source and diluting gases, respectively. N2, H2, and NH3 were used as the etching gases, respectively. Results show that the optimum conditions can be obtained only for the case of H2 gas. The crystal morphology and crystallinity of the samples have been examined by scanning electron microscopy and X-ray diffraction, respectively.展开更多
基金supported by the Ministry of Science and Technology of China (2016YFA0204100, 2017YFA0208200)the National Natural Science Foundation of China (21571135)+2 种基金Young Thousand Talented Programthe Natural Science Foundation of Jiangsu Higher Education Institutions (17KJB150032)the Start-up Supports from Soochow Universitythe Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘The water-gas shift(WGS) reaction is an essential industrial reaction for upgrading hydrogen(H2) by removing carbon monoxide(CO), while highly efficient platinum(Pt)-based catalysts for WGS with simultaneously high activity and stability are still yet to be developed due to the poisoning issue during the reaction. Herein, we report on the porous PtPb peanut nanocrystals(porous PtPb PNCs) and porous PtPb octahedron nanocrystals(porous PtPb ONCs) with controllable ratios of Pt/Pb as extremely active and stable catalysts towards WGS reaction. It exhibits the composition-dependent activity with porous PtPb PNCs-40/ZnO being the most active for WGS to H_2, 16.9 times higher than that of the commercial Pt/C. The porous PtPb PNCs-40/ZnO also display outstanding durability with barely activity decay and negligible structure and composition changes after ten successive reaction cycles. X-ray photoelectron spectroscopy(XPS) results reveal that the suitable binding energy of Pt 4f_(7/2) and the high ratio of Pt(0)to Pt(II) in porous PtPb PNCs/ZnO and porous PtPb ONCs/ZnO are crucial for the enhanced WGS activity.The CO stripping results indicate the optimized CO adsorption strength on the Pt surface ensure the excellent WGS activity and the outstanding durability. The present work demonstrates an important advance in tuning the porous metal nanomaterials as highly efficient and durable catalysts for catalysis,energy conversion and beyond.
文摘We investigate the effects of etching gases on the synthesis of nano crystalline diamonds grown on silicon substrate at the substrate temperature of 550℃ and the reaction pressure of 4 kPa by hot filament chemical vapor deposition method, in which CH4 and H2 act as a source and diluting gases, respectively. N2, H2, and NH3 were used as the etching gases, respectively. Results show that the optimum conditions can be obtained only for the case of H2 gas. The crystal morphology and crystallinity of the samples have been examined by scanning electron microscopy and X-ray diffraction, respectively.