针对相干源方位估计问题,本文在PVFS(Particle Velocity Field Smoothing)算法的基础上,提出一种新的算法。该算法通过对PVFS算法构造出的协方差矩阵进行特征值分解,利用得到的特征值及特征向量构造新的噪声子空间,然后运用子空间原理...针对相干源方位估计问题,本文在PVFS(Particle Velocity Field Smoothing)算法的基础上,提出一种新的算法。该算法通过对PVFS算法构造出的协方差矩阵进行特征值分解,利用得到的特征值及特征向量构造新的噪声子空间,然后运用子空间原理实现相干源的方位估计。该算法无需已知相干源的信源数目且不会损失阵列孔径,具有较好的相干源方位估计性能,计算机仿真结果验证了本文算法的有效性。展开更多
低信噪比(signal-to-noise ratio,SNR)或小接收快拍数条件下,经典的二维(two-dimensional,2D)波达方向(direction of arrival,DOA)算法存在估计精度低的缺点。针对该问题,充分利用L型阵列接收数据的自、互相关信息,提出一种适用于低SNR...低信噪比(signal-to-noise ratio,SNR)或小接收快拍数条件下,经典的二维(two-dimensional,2D)波达方向(direction of arrival,DOA)算法存在估计精度低的缺点。针对该问题,充分利用L型阵列接收数据的自、互相关信息,提出一种适用于低SNR及小接收快拍数环境下的2D DOA估计新方法。该方法首先通过解析优化2D谱峰搜索问题,获得方位角与仰角之间的特定约束关系,进而将包含2D角度参量的目标函数转化为只包含一维(one-dimensional,1D)角度参量,即可通过1D谱峰搜索获得方位角(或仰角)估计值,最后再次利用该约束关系求得与之对应的仰角(或方位角)估计值。该方法只需1D谱峰搜索,而且所得2D角度估计参数可自动实现配对。计算机仿真验证了该方法在低SNR及小接收快拍数情况下的有效性。展开更多
文摘针对相干源方位估计问题,本文在PVFS(Particle Velocity Field Smoothing)算法的基础上,提出一种新的算法。该算法通过对PVFS算法构造出的协方差矩阵进行特征值分解,利用得到的特征值及特征向量构造新的噪声子空间,然后运用子空间原理实现相干源的方位估计。该算法无需已知相干源的信源数目且不会损失阵列孔径,具有较好的相干源方位估计性能,计算机仿真结果验证了本文算法的有效性。
文摘低信噪比(signal-to-noise ratio,SNR)或小接收快拍数条件下,经典的二维(two-dimensional,2D)波达方向(direction of arrival,DOA)算法存在估计精度低的缺点。针对该问题,充分利用L型阵列接收数据的自、互相关信息,提出一种适用于低SNR及小接收快拍数环境下的2D DOA估计新方法。该方法首先通过解析优化2D谱峰搜索问题,获得方位角与仰角之间的特定约束关系,进而将包含2D角度参量的目标函数转化为只包含一维(one-dimensional,1D)角度参量,即可通过1D谱峰搜索获得方位角(或仰角)估计值,最后再次利用该约束关系求得与之对应的仰角(或方位角)估计值。该方法只需1D谱峰搜索,而且所得2D角度估计参数可自动实现配对。计算机仿真验证了该方法在低SNR及小接收快拍数情况下的有效性。