In this paper the main sources causing the scatter of the experimental results of the material parameters are discussed. They can be divided into two parts: one is the experimental errors which are introduced because ...In this paper the main sources causing the scatter of the experimental results of the material parameters are discussed. They can be divided into two parts: one is the experimental errors which are introduced because of the inaccuracy of experimental equipment, the experimental techniques, etc., and the form of the scatter caused by this source is called external distribution. The other is due to the irregularity and inhomogeneity of the material structure and the randomness of deformation process. The scatter caused by this source is inherent and then this form of the scatter is called internal distribution. Obviously the experimental distribution of material parameters combines these two distributions in some way; therefore, it is a sum distribution of the external distribution and the internal distribution. In view of this , a general method used to analyse the influence of the experimental errors on the experimental results is presented, and three criteria used to value this influence are defined. An example in which the fracture toughness KIC is analysed shows that this method is reasonable, convenient and effective.展开更多
To take the seismic zone that includes the great shock with M S8.5 as the statistical unit of estimating b value can often lead to more large variance, because the seismogenic zone of the great shock with M...To take the seismic zone that includes the great shock with M S8.5 as the statistical unit of estimating b value can often lead to more large variance, because the seismogenic zone of the great shock with M S8.5 are larger than that delineated in general seismic zone. Two-level statistical units are considered in this paper. The seismic province is the first level unit that is suitable for group of earthquakes including the great shock of M S8.5. A seismic province can be divided into several seismic zones. They can be taken as the second level unit for group of quakes in which the super magnitude of the greatest shock do not exceed 8. Because of the nonstationarity in time of seismic activity, the unbalancedness of data and differential of seismic temporal series feature in different areas need to be considered when we select the time period for estimating b value. According to local conditions, the time period is selected at one′s discretion in order to reflect seismicity level of this statistical unit in future 100 years.展开更多
文摘In this paper the main sources causing the scatter of the experimental results of the material parameters are discussed. They can be divided into two parts: one is the experimental errors which are introduced because of the inaccuracy of experimental equipment, the experimental techniques, etc., and the form of the scatter caused by this source is called external distribution. The other is due to the irregularity and inhomogeneity of the material structure and the randomness of deformation process. The scatter caused by this source is inherent and then this form of the scatter is called internal distribution. Obviously the experimental distribution of material parameters combines these two distributions in some way; therefore, it is a sum distribution of the external distribution and the internal distribution. In view of this , a general method used to analyse the influence of the experimental errors on the experimental results is presented, and three criteria used to value this influence are defined. An example in which the fracture toughness KIC is analysed shows that this method is reasonable, convenient and effective.
文摘To take the seismic zone that includes the great shock with M S8.5 as the statistical unit of estimating b value can often lead to more large variance, because the seismogenic zone of the great shock with M S8.5 are larger than that delineated in general seismic zone. Two-level statistical units are considered in this paper. The seismic province is the first level unit that is suitable for group of earthquakes including the great shock of M S8.5. A seismic province can be divided into several seismic zones. They can be taken as the second level unit for group of quakes in which the super magnitude of the greatest shock do not exceed 8. Because of the nonstationarity in time of seismic activity, the unbalancedness of data and differential of seismic temporal series feature in different areas need to be considered when we select the time period for estimating b value. According to local conditions, the time period is selected at one′s discretion in order to reflect seismicity level of this statistical unit in future 100 years.