In this paper we consider the empirical Bayes (EB) estimation problem for estimable function of regression coefficient in a multiple linear regression model Y=Xβ+e. where e with given β has a multivariate standard n...In this paper we consider the empirical Bayes (EB) estimation problem for estimable function of regression coefficient in a multiple linear regression model Y=Xβ+e. where e with given β has a multivariate standard normal distribution. We get the EB estimators by using kernel estimation of multivariate density function and its first order partial derivatives. It is shown that the convergence rates of the EB estimators are under the condition where an integer k > 1 . is an arbitrary small number and m is the dimension of the vector Y.展开更多
针对移动机器人路径规划实现条件的限制,提出基于GIS(geographic information system)地图的移动机器人路径规划.该方法应用改进A*算法,较好地实现了移动机器人的最优路径规划.在任意给定的地图中,只要确定了机器人的起点和终点,就可以...针对移动机器人路径规划实现条件的限制,提出基于GIS(geographic information system)地图的移动机器人路径规划.该方法应用改进A*算法,较好地实现了移动机器人的最优路径规划.在任意给定的地图中,只要确定了机器人的起点和终点,就可以找到该机器人在实际工作环境中符合需求的路径规划轨迹.应用VC++编程进行实验,证明了该方法的有效性.展开更多
文摘In this paper we consider the empirical Bayes (EB) estimation problem for estimable function of regression coefficient in a multiple linear regression model Y=Xβ+e. where e with given β has a multivariate standard normal distribution. We get the EB estimators by using kernel estimation of multivariate density function and its first order partial derivatives. It is shown that the convergence rates of the EB estimators are under the condition where an integer k > 1 . is an arbitrary small number and m is the dimension of the vector Y.
文摘针对移动机器人路径规划实现条件的限制,提出基于GIS(geographic information system)地图的移动机器人路径规划.该方法应用改进A*算法,较好地实现了移动机器人的最优路径规划.在任意给定的地图中,只要确定了机器人的起点和终点,就可以找到该机器人在实际工作环境中符合需求的路径规划轨迹.应用VC++编程进行实验,证明了该方法的有效性.