Krüppel样因子(Krüppel-like factors,KLFs)是一组与真核基因转录调控密切相关的锌指蛋白.KLFs高度保守的羧基末端含3个串联的Cys2His2型锌指结构,用于结合GC盒和CACCC盒等DNA序列.红细胞中特异表达的珠蛋白基因和许多红系调...Krüppel样因子(Krüppel-like factors,KLFs)是一组与真核基因转录调控密切相关的锌指蛋白.KLFs高度保守的羧基末端含3个串联的Cys2His2型锌指结构,用于结合GC盒和CACCC盒等DNA序列.红细胞中特异表达的珠蛋白基因和许多红系调控因子中都含有CACCC盒.已有研究发现,多个KLFs通过结合CACCC盒参与调控珠蛋白基因表达和红系分化,例如,KLF1通过结合β-珠蛋白启动子和位点控制区(locus control region,LCR),促进β-珠蛋白的表达、γ-向β-珠蛋白基因的转换和红系分化;KLF2、KLF11和KLF13分别促进ε-和γ-珠蛋白基因的表达;KLF4促进α-和γ-珠蛋白基因的表达;KLF3和KLF8则抑制ε-和γ-珠蛋白基因的表达.本文综述了KLFs调控珠蛋白基因表达和红系分化的研究进展.展开更多
Studies on coding genes, miRNAs, and lncRNAs during erythroid development have been performed in recent years. However, analysis focusing on the integration of the three RNA types has yet to be done. In the present st...Studies on coding genes, miRNAs, and lncRNAs during erythroid development have been performed in recent years. However, analysis focusing on the integration of the three RNA types has yet to be done. In the present study, we compared the dynamics of coding genes, miRNA, and IncRNA expression profiles. To explore dynamic changes in erythropoiesis and potential mechanisms that control these changes in the transcriptome level, we took advantage of high throughput sequencing technologies to obtain transcriptome data from cord blood hematopoietic stem cells and the following four erythroid differentiation stages, as well as from mature red blood cells. Results indicated that lncRNAs were promising cell marker candidates for erythroid differentiation. Clustering analysis classified the differentially expressed genes into four subtypes that corresponded to dynamic changes during sternness maintenance, mid-differentiation, and maturation. Integrated analysis revealed that noncoding RNAs potentially participated in controlling blood cell maturation, and especially associated with heine metabolism and responses to oxygen species and DNA damage. These regulatory interactions were displayed in a comprehensive network, thereby inferring correlations between RNAs and their associated functions. These data provided a substantial resource for the study of normal erythropoiesis, which will permit further investigation and understanding of erythroid development and acquired erythroid disorders.展开更多
Objective: To investigate the effect on erythroid differentiation and proliferation of K562 cells by IER3IP1-knockdown with RNA interference targeting at IER3IP1 gene. Methods: The shRNA eukaryotic expression vecto...Objective: To investigate the effect on erythroid differentiation and proliferation of K562 cells by IER3IP1-knockdown with RNA interference targeting at IER3IP1 gene. Methods: The shRNA eukaryotic expression vectors targeting at IER3IP1 gene were designed and constructed. Inhibitory effect was detected by semiquantitative RT-PCR. The impacts on K562 cells by RNAi were studied by MTT assay, benzidine staining, light microscope and electron microscopy observation, cell cycles analysis, colony formation assay and RT-PCR. The expressions of erythroid differentiation correlated genes Gfi-lB, GPA and 7-globin were studied after being exposed to 0.2μmol/L imatinib for two days. Results: The shRNA eukaryotic expression vectors were successfully constructed. The expression of IER3IP1 gene was significantly inhibited with an inhibition efficiency of 76% (P〈0.01). Compared with the control groups, bcr/abl mRNA level was increased in K562/shRNA-IER3IP1 group (P〈0.01). The proliferation ability was enhanced (P〈0.01) and the proportion of cells at G0/G1 phase decreased but S phase increased (P〈0.05) in K562/shRNA-IER3IP1 group. Under electron microscopy, the amount of euchromatin increased but heterochromatin decreased. There were structural abnomalities in endocytoplasmic reticulum and clusters of vesicular. The percentage of benzidine staining positive cells and mRNA expression levels of Gfi-1B, GPA and γ-globin were all decreased after being exposed to 0.2 μmol/L STI571 for two days in K562/shRNA-IER3IP1 group (P〈0.01). Conclusion: IER3IP1-knockdown can hinder the erythroid differentiation and elevate the proliferation level of K562 cells. IER3IP1 may play a role in erythroid differentiation and proliferation of K562 cells.展开更多
Our previous studies showed that some nuclear proteins that were expressed especially during terminal differentiation of erythroid cells might interact directly or indirectly with HS2 sequence to form the HS2-protein ...Our previous studies showed that some nuclear proteins that were expressed especially during terminal differentiation of erythroid cells might interact directly or indirectly with HS2 sequence to form the HS2-protein complexes and thus play an important role in the globin gene regulation and erythroid differentiation. Monoclonal antibodies against the nuclear proteins of terminal differentiated erythroid cells, including intermediate and late erythroblasts of human fetal liver and hemin induced K562 cells, were prepared by hybridoma technique. The monoclonal antibodies were used to screen λ-gtll human cDNA expression library of fetal liver in order to obtain the relevant cDNA clones. By the analysis of their cDNA clones and the identification of the proteins' functions, the regulation mechanism of the HS2 binding proteins might be better understood. Two cDNA clones (GenBank accession number AF040247 and AF040248 respectively) were obtained and one of them owns a full length and the other encodes a protein characterized by a leu-cine-zipper domain. Both of them were expressed differentially in K562 cells and hemin-induced K562 cells. The evidence suggested that both of them were involved in erythroid differentiation. We investigated the expression pattern of EDRF1 and EDRF2 by RT-PCR technique. The results of RT-PCR suggested that EDRF1 and EDRF2 might play a critical role in early stage of organ development and histological differentiation. EDRF1 and EDRF2 might start the program of erythroid development, and also regulate the development of erythroid tissue and the expression of globin gene at different stage of the development.展开更多
文摘Krüppel样因子(Krüppel-like factors,KLFs)是一组与真核基因转录调控密切相关的锌指蛋白.KLFs高度保守的羧基末端含3个串联的Cys2His2型锌指结构,用于结合GC盒和CACCC盒等DNA序列.红细胞中特异表达的珠蛋白基因和许多红系调控因子中都含有CACCC盒.已有研究发现,多个KLFs通过结合CACCC盒参与调控珠蛋白基因表达和红系分化,例如,KLF1通过结合β-珠蛋白启动子和位点控制区(locus control region,LCR),促进β-珠蛋白的表达、γ-向β-珠蛋白基因的转换和红系分化;KLF2、KLF11和KLF13分别促进ε-和γ-珠蛋白基因的表达;KLF4促进α-和γ-珠蛋白基因的表达;KLF3和KLF8则抑制ε-和γ-珠蛋白基因的表达.本文综述了KLFs调控珠蛋白基因表达和红系分化的研究进展.
文摘Studies on coding genes, miRNAs, and lncRNAs during erythroid development have been performed in recent years. However, analysis focusing on the integration of the three RNA types has yet to be done. In the present study, we compared the dynamics of coding genes, miRNA, and IncRNA expression profiles. To explore dynamic changes in erythropoiesis and potential mechanisms that control these changes in the transcriptome level, we took advantage of high throughput sequencing technologies to obtain transcriptome data from cord blood hematopoietic stem cells and the following four erythroid differentiation stages, as well as from mature red blood cells. Results indicated that lncRNAs were promising cell marker candidates for erythroid differentiation. Clustering analysis classified the differentially expressed genes into four subtypes that corresponded to dynamic changes during sternness maintenance, mid-differentiation, and maturation. Integrated analysis revealed that noncoding RNAs potentially participated in controlling blood cell maturation, and especially associated with heine metabolism and responses to oxygen species and DNA damage. These regulatory interactions were displayed in a comprehensive network, thereby inferring correlations between RNAs and their associated functions. These data provided a substantial resource for the study of normal erythropoiesis, which will permit further investigation and understanding of erythroid development and acquired erythroid disorders.
基金supported by the National Natural Science Foundation of China (No.30171150)
文摘Objective: To investigate the effect on erythroid differentiation and proliferation of K562 cells by IER3IP1-knockdown with RNA interference targeting at IER3IP1 gene. Methods: The shRNA eukaryotic expression vectors targeting at IER3IP1 gene were designed and constructed. Inhibitory effect was detected by semiquantitative RT-PCR. The impacts on K562 cells by RNAi were studied by MTT assay, benzidine staining, light microscope and electron microscopy observation, cell cycles analysis, colony formation assay and RT-PCR. The expressions of erythroid differentiation correlated genes Gfi-lB, GPA and 7-globin were studied after being exposed to 0.2μmol/L imatinib for two days. Results: The shRNA eukaryotic expression vectors were successfully constructed. The expression of IER3IP1 gene was significantly inhibited with an inhibition efficiency of 76% (P〈0.01). Compared with the control groups, bcr/abl mRNA level was increased in K562/shRNA-IER3IP1 group (P〈0.01). The proliferation ability was enhanced (P〈0.01) and the proportion of cells at G0/G1 phase decreased but S phase increased (P〈0.05) in K562/shRNA-IER3IP1 group. Under electron microscopy, the amount of euchromatin increased but heterochromatin decreased. There were structural abnomalities in endocytoplasmic reticulum and clusters of vesicular. The percentage of benzidine staining positive cells and mRNA expression levels of Gfi-1B, GPA and γ-globin were all decreased after being exposed to 0.2 μmol/L STI571 for two days in K562/shRNA-IER3IP1 group (P〈0.01). Conclusion: IER3IP1-knockdown can hinder the erythroid differentiation and elevate the proliferation level of K562 cells. IER3IP1 may play a role in erythroid differentiation and proliferation of K562 cells.
文摘Our previous studies showed that some nuclear proteins that were expressed especially during terminal differentiation of erythroid cells might interact directly or indirectly with HS2 sequence to form the HS2-protein complexes and thus play an important role in the globin gene regulation and erythroid differentiation. Monoclonal antibodies against the nuclear proteins of terminal differentiated erythroid cells, including intermediate and late erythroblasts of human fetal liver and hemin induced K562 cells, were prepared by hybridoma technique. The monoclonal antibodies were used to screen λ-gtll human cDNA expression library of fetal liver in order to obtain the relevant cDNA clones. By the analysis of their cDNA clones and the identification of the proteins' functions, the regulation mechanism of the HS2 binding proteins might be better understood. Two cDNA clones (GenBank accession number AF040247 and AF040248 respectively) were obtained and one of them owns a full length and the other encodes a protein characterized by a leu-cine-zipper domain. Both of them were expressed differentially in K562 cells and hemin-induced K562 cells. The evidence suggested that both of them were involved in erythroid differentiation. We investigated the expression pattern of EDRF1 and EDRF2 by RT-PCR technique. The results of RT-PCR suggested that EDRF1 and EDRF2 might play a critical role in early stage of organ development and histological differentiation. EDRF1 and EDRF2 might start the program of erythroid development, and also regulate the development of erythroid tissue and the expression of globin gene at different stage of the development.