Two signature systems based on smart cards and fingerprint features are proposed. In one signature system, the cryptographic key is stored in the smart card and is only accessible when the signer's extracted fingerpr...Two signature systems based on smart cards and fingerprint features are proposed. In one signature system, the cryptographic key is stored in the smart card and is only accessible when the signer's extracted fingerprint features match his stored template. To resist being tampered on public channel, the user's message and the signed message are encrypted by the signer's public key and the user's public key, respectively. In the other signature system, the keys are generated by combining the signer's fingerprint features, check bits, and a rememberable key, and there are no matching process and keys stored on the smart card. Additionally, there is generally more than one public key in this system, that is, there exist some pseudo public keys except a real one.展开更多
Purpose–The electromechanical brake system is leading the latest development trend in railway braking technology.The tolerance stack-up generated during the assembly and production process catalyzes the slight geomet...Purpose–The electromechanical brake system is leading the latest development trend in railway braking technology.The tolerance stack-up generated during the assembly and production process catalyzes the slight geometric dimensioning and tolerancing between the motor stator and rotor inside the electromechanical cylinder.The tolerance leads to imprecise brake control,so it is necessary to diagnose the fault of the motor in the fully assembled electromechanical brake system.This paper aims to present improved variational mode decomposition(VMD)algorithm,which endeavors to elucidate and push the boundaries of mechanical synchronicity problems within the realm of the electromechanical brake system.Design/methodology/approach–The VMD algorithm plays a pivotal role in the preliminary phase,employing mode decomposition techniques to decompose the motor speed signals.Afterward,the error energy algorithm precision is utilized to extract abnormal features,leveraging the practical intrinsic mode functions,eliminating extraneous noise and enhancing the signal’s fidelity.This refined signal then becomes the basis for fault analysis.In the analytical step,the cepstrum is employed to calculate the formant and envelope of the reconstructed signal.By scrutinizing the formant and envelope,the fault point within the electromechanical brake system is precisely identified,contributing to a sophisticated and accurate fault diagnosis.Findings–This paper innovatively uses the VMD algorithm for the modal decomposition of electromechanical brake(EMB)motor speed signals and combines it with the error energy algorithm to achieve abnormal feature extraction.The signal is reconstructed according to the effective intrinsic mode functions(IMFS)component of removing noise,and the formant and envelope are calculated by cepstrum to locate the fault point.Experiments show that the empirical mode decomposition(EMD)algorithm can effectively decompose the original speed signal.After feature extraction,signal enhancement and fault identificatio展开更多
基金This project was supported by the National Science Foundation of China (60763009)China Postdoctoral Science Foundation (2005038041)Hainan Natural Science Foundation (80528).
文摘Two signature systems based on smart cards and fingerprint features are proposed. In one signature system, the cryptographic key is stored in the smart card and is only accessible when the signer's extracted fingerprint features match his stored template. To resist being tampered on public channel, the user's message and the signed message are encrypted by the signer's public key and the user's public key, respectively. In the other signature system, the keys are generated by combining the signer's fingerprint features, check bits, and a rememberable key, and there are no matching process and keys stored on the smart card. Additionally, there is generally more than one public key in this system, that is, there exist some pseudo public keys except a real one.
基金funded by the Science Foundation of China Academy of Railway Science,grant number 2020YJ175.
文摘Purpose–The electromechanical brake system is leading the latest development trend in railway braking technology.The tolerance stack-up generated during the assembly and production process catalyzes the slight geometric dimensioning and tolerancing between the motor stator and rotor inside the electromechanical cylinder.The tolerance leads to imprecise brake control,so it is necessary to diagnose the fault of the motor in the fully assembled electromechanical brake system.This paper aims to present improved variational mode decomposition(VMD)algorithm,which endeavors to elucidate and push the boundaries of mechanical synchronicity problems within the realm of the electromechanical brake system.Design/methodology/approach–The VMD algorithm plays a pivotal role in the preliminary phase,employing mode decomposition techniques to decompose the motor speed signals.Afterward,the error energy algorithm precision is utilized to extract abnormal features,leveraging the practical intrinsic mode functions,eliminating extraneous noise and enhancing the signal’s fidelity.This refined signal then becomes the basis for fault analysis.In the analytical step,the cepstrum is employed to calculate the formant and envelope of the reconstructed signal.By scrutinizing the formant and envelope,the fault point within the electromechanical brake system is precisely identified,contributing to a sophisticated and accurate fault diagnosis.Findings–This paper innovatively uses the VMD algorithm for the modal decomposition of electromechanical brake(EMB)motor speed signals and combines it with the error energy algorithm to achieve abnormal feature extraction.The signal is reconstructed according to the effective intrinsic mode functions(IMFS)component of removing noise,and the formant and envelope are calculated by cepstrum to locate the fault point.Experiments show that the empirical mode decomposition(EMD)algorithm can effectively decompose the original speed signal.After feature extraction,signal enhancement and fault identificatio