An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same t...An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.展开更多
The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space ...The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space Vh × Wh H(div; × L2(). Optimal order estimates are obtained for the approximation of u, ut, the associated velocity p and divp respectively in L(0,T;L2()), L(0,T;L2()), L(0,T;L2()2), and L2(0, T; L2()). Quasi-optimal order estimates are obtained for the approximations of u, ut in L(0, T; L()) and p in L(0,T; L()2).展开更多
In this paper, we study the superconvergence of the error for the local discontinuous Galerkin (LDG) finite element method for one-dimensional linear parabolic equations when the alternating flux is used. We prove t...In this paper, we study the superconvergence of the error for the local discontinuous Galerkin (LDG) finite element method for one-dimensional linear parabolic equations when the alternating flux is used. We prove that if we apply piecewise k-th degree polynomials, the error between the LDG solution and the exact solution is (k + 2)-th order superconvergent at the Radau points with suitable initial discretization. Moreover, we also prove the LDG solution is (k + 2)-th order superconvergent for the error to a particular projection of the exact solution. Even though we only consider periodic boundary condition, this boundary condition is not essential, since we do not use Fourier analysis. Our analysis is valid for arbitrary regular meshes and for P^k polynomials with arbitrary k ≥ 1. We perform numerical experiments to demonstrate that the superconvergence rates proved in this paper are sharp.展开更多
In this paper, both the standard finite element discretization and a two-scale finite element discretization for SchrSdinger equations are studied. The numerical analysis is based on the regularity that is also obtain...In this paper, both the standard finite element discretization and a two-scale finite element discretization for SchrSdinger equations are studied. The numerical analysis is based on the regularity that is also obtained in this paper for the Schroedinger equations. Very satisfying applications to electronic structure computations are provided, too.展开更多
基金Supported by the National Natural Science Foundation of China (10601022)Natural Science Foundation of Inner Mongolia Autonomous Region (200607010106)Youth Science Foundation of Inner Mongolia University(ND0702)
文摘An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.
文摘The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space Vh × Wh H(div; × L2(). Optimal order estimates are obtained for the approximation of u, ut, the associated velocity p and divp respectively in L(0,T;L2()), L(0,T;L2()), L(0,T;L2()2), and L2(0, T; L2()). Quasi-optimal order estimates are obtained for the approximations of u, ut in L(0, T; L()) and p in L(0,T; L()2).
文摘In this paper, we study the superconvergence of the error for the local discontinuous Galerkin (LDG) finite element method for one-dimensional linear parabolic equations when the alternating flux is used. We prove that if we apply piecewise k-th degree polynomials, the error between the LDG solution and the exact solution is (k + 2)-th order superconvergent at the Radau points with suitable initial discretization. Moreover, we also prove the LDG solution is (k + 2)-th order superconvergent for the error to a particular projection of the exact solution. Even though we only consider periodic boundary condition, this boundary condition is not essential, since we do not use Fourier analysis. Our analysis is valid for arbitrary regular meshes and for P^k polynomials with arbitrary k ≥ 1. We perform numerical experiments to demonstrate that the superconvergence rates proved in this paper are sharp.
基金the National Science Founda-tion of China under grant 10425105the National Basic Research Program under grant 2005CB321704
文摘In this paper, both the standard finite element discretization and a two-scale finite element discretization for SchrSdinger equations are studied. The numerical analysis is based on the regularity that is also obtained in this paper for the Schroedinger equations. Very satisfying applications to electronic structure computations are provided, too.