Based on the fixed-point theory, we study the existence and the uniqueness of the maximal Hermitian positive definite solution of the nonlinear matrix equation X+A^*X^-2A=Q, where Q is a square Hermitian positive de...Based on the fixed-point theory, we study the existence and the uniqueness of the maximal Hermitian positive definite solution of the nonlinear matrix equation X+A^*X^-2A=Q, where Q is a square Hermitian positive definite matrix and A* is the conjugate transpose of the matrix A. We also demonstrate some essential properties and analyze the sensitivity of this solution. In addition, we derive computable error bounds about the approximations to the maximal Hermitian positive definite solution of the nonlinear matrix equation X+A^*X^-2A=Q. At last, we further generalize these results to the nonlinear matrix equation X+A^*X^-nA=Q, where n≥2 is a given positive integer.展开更多
This paper addresses the generalized linear complementarity problem (GLCP) over a polyhedral cone. To solve the problem, we first equivalently convert the problem into an affine variational inequalities problem over...This paper addresses the generalized linear complementarity problem (GLCP) over a polyhedral cone. To solve the problem, we first equivalently convert the problem into an affine variational inequalities problem over a closed polyhedral cone, and then propose a new type of method to solve the GLCP based on the error bound estimation. The global and R-linear convergence rate is established. The numerical experiments show the efficiency of the method.展开更多
We estimate error bounds between ternary subdivision curves/surfaces and their control polygons after k-fold subdivision in terms of the maximal differences of the initial control point sequences and constants that de...We estimate error bounds between ternary subdivision curves/surfaces and their control polygons after k-fold subdivision in terms of the maximal differences of the initial control point sequences and constants that depend on the subdivision mask. The bound is independent of the process of subdivision and can be evaluated without recursive subdivision. Our technique is independent of parametrization therefore it can be easily and efficiently implemented. This is useful and important for pre-computing the error bounds of subdivision curves/surfaces in advance in many engineering applications such as surface/surface intersection, mesh generation, NC machining, surface rendering and so on.展开更多
文摘Based on the fixed-point theory, we study the existence and the uniqueness of the maximal Hermitian positive definite solution of the nonlinear matrix equation X+A^*X^-2A=Q, where Q is a square Hermitian positive definite matrix and A* is the conjugate transpose of the matrix A. We also demonstrate some essential properties and analyze the sensitivity of this solution. In addition, we derive computable error bounds about the approximations to the maximal Hermitian positive definite solution of the nonlinear matrix equation X+A^*X^-2A=Q. At last, we further generalize these results to the nonlinear matrix equation X+A^*X^-nA=Q, where n≥2 is a given positive integer.
基金supported by National Natural Science Foundation of China (No. 10771120)
文摘This paper addresses the generalized linear complementarity problem (GLCP) over a polyhedral cone. To solve the problem, we first equivalently convert the problem into an affine variational inequalities problem over a closed polyhedral cone, and then propose a new type of method to solve the GLCP based on the error bound estimation. The global and R-linear convergence rate is established. The numerical experiments show the efficiency of the method.
基金This work was supported in part by NSF of China(No. 10201030)the TRAPOYT in Higher Education Institute of MOE of chinathe Doctoral Program of MOE of china(No. 20010358003)
文摘We estimate error bounds between ternary subdivision curves/surfaces and their control polygons after k-fold subdivision in terms of the maximal differences of the initial control point sequences and constants that depend on the subdivision mask. The bound is independent of the process of subdivision and can be evaluated without recursive subdivision. Our technique is independent of parametrization therefore it can be easily and efficiently implemented. This is useful and important for pre-computing the error bounds of subdivision curves/surfaces in advance in many engineering applications such as surface/surface intersection, mesh generation, NC machining, surface rendering and so on.