New Ag/Ti_2 SnC(Ag/TSC) composites with uniform microstructure were prepared by powder metallurgy. The superior wettability between Ag and Ti_2 SnC was confirmed with a contact angle of 14°. Arc erosion propertie...New Ag/Ti_2 SnC(Ag/TSC) composites with uniform microstructure were prepared by powder metallurgy. The superior wettability between Ag and Ti_2 SnC was confirmed with a contact angle of 14°. Arc erosion properties of Ag/10 wt%Ti_2 SnC(Ag/10 TSC) and Ag/20 wt%Ti_2 SnC(Ag/20 TSC) contacts were investigated under 400 V/100 A/AC-3 and compared with Ag/CdO contact.The Ag/10 TSC contact exhibited comparable arc erosion property to Ag/CdO contact. The fine arc erosion resistance was attributed to the good wettability between Ti_2 SnC and Ag,the good heat-conducting property of Ag/10 TSC, and the slight decomposition of Ti_2 SnC that absorbed part of electric arc energy. The excessive Ti_2 SnC significantly decreased the thermal conducting property of the Ag/20 TSC composite, resulting in the severe heat accumulation that decomposed Ti_2 SnC and deteriorated arc erosion property. The oxidation behavior of Ti_2 SnC under high electric arc temperature was also studied and then an arc erosion mechanism was proposed to get a comprehensive understanding on the arc erosion property of Ag/TSC composites.展开更多
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 51731004, 51671054, and 51501038)the Fundamental Research Funds for the Central Universities in China (Grant Nos. 2242018K40108 and 2242018K40109) were highly appreciated
文摘New Ag/Ti_2 SnC(Ag/TSC) composites with uniform microstructure were prepared by powder metallurgy. The superior wettability between Ag and Ti_2 SnC was confirmed with a contact angle of 14°. Arc erosion properties of Ag/10 wt%Ti_2 SnC(Ag/10 TSC) and Ag/20 wt%Ti_2 SnC(Ag/20 TSC) contacts were investigated under 400 V/100 A/AC-3 and compared with Ag/CdO contact.The Ag/10 TSC contact exhibited comparable arc erosion property to Ag/CdO contact. The fine arc erosion resistance was attributed to the good wettability between Ti_2 SnC and Ag,the good heat-conducting property of Ag/10 TSC, and the slight decomposition of Ti_2 SnC that absorbed part of electric arc energy. The excessive Ti_2 SnC significantly decreased the thermal conducting property of the Ag/20 TSC composite, resulting in the severe heat accumulation that decomposed Ti_2 SnC and deteriorated arc erosion property. The oxidation behavior of Ti_2 SnC under high electric arc temperature was also studied and then an arc erosion mechanism was proposed to get a comprehensive understanding on the arc erosion property of Ag/TSC composites.