为科学揭示梯级水库群运行对河流生态的影响,基于黄河上游实测水沙序列,采用IHA(Indicators of Hydrologic Alteration)指标体系,对比分析了不同工程运行时期黄河上游水文情势变化,运用多系列贡献率分割法,量化了不同影响因子对水文情...为科学揭示梯级水库群运行对河流生态的影响,基于黄河上游实测水沙序列,采用IHA(Indicators of Hydrologic Alteration)指标体系,对比分析了不同工程运行时期黄河上游水文情势变化,运用多系列贡献率分割法,量化了不同影响因子对水文情势变化的贡献率。通过输沙率法结合断面淤积形态分析揭示了黄河上游河道冲淤演变。结果表明,黄河上游水库运行对河流径流及河道形态产生了深刻影响,进而影响了河流生态。水库运行后非汛期月均流量上升、汛期月均流量下降、高流量事件发生频率与流量减少,径流趋于平缓,且宁蒙河段泥沙淤积、断面形态趋于宽浅。分析表明水库运行是造成黄河上游兰州水文情势变化的主要原因,以及石嘴山、头道拐水文情势变化的重要原因,高流量事件的减少加剧了河道淤积,使河流生态朝不利方向演化,为维护黄河上游生态健康有必要实施生态调度,提高涨水期和洪水期下泄流量并制造高流量事件。研究为评估梯级水库运行的生态影响、指导梯级水库生态调度提供方向性参考。展开更多
Based on an empirical sediment transport equation that reflects the characteristics of "more input, more output" for sediment-laden flow in rivers, a general sediment transport expression was developed, which can ta...Based on an empirical sediment transport equation that reflects the characteristics of "more input, more output" for sediment-laden flow in rivers, a general sediment transport expression was developed, which can take into account the effects of upstream sediment input, previous cumulative sediment deposition, critical runoff for sediment initiation, and the differences in sediment particle sizes between the mainstream and tributaries. Then, sedi- ment load equations for non-flood and flood seasons for the sub-reaches from Bayangaole to Sanhuhekou and from Sanhuhekou to Toudaoguai, as well as the whole Inner Mongolia reach from Bayangaole to Toudaoguai, were formulated based on data collected between 1952 and 2010. The corresponding sediment deposition and the cumulative values at each river reach were calculated using the proposed sediment transport equations for the period 1952 to 2010 according to the principle of sediment conservation. Comparisons between the calculated and measured values using the proposed sediment load equations for the sub-reaches and the entire reach showed that the calculated sediment load and sediment deposition and the cor- responding cumulative values in the flood and non-flood seasons were in good agreement with the measured values. These results indicated that the proposed methods can be applied to calculate the sediment load and the associated sediment deposition in the flood and non-flood seasons for long-term trend analysis of sediment deposition in the Inner Mongolia reach of the Yellow River.展开更多
The rotary ring flume is used to study the silty sand movement in a periodic alternating current.Characteristics of sediment movement of different coasts in the tidal current are summarized.More detailed analysis of e...The rotary ring flume is used to study the silty sand movement in a periodic alternating current.Characteristics of sediment movement of different coasts in the tidal current are summarized.More detailed analysis of erosion-sedimentation function in a numerical simulation is made.The equilibrium sediment concentration is advanced.Based on the equilibrium sediment concentration,the seabed erosion-sedimentation index is derived and the seabed erosion-sedimentation calculation is analyzed.The seabed erosion-sedimentation index is used to calculate the seabed evolution of Yangshan sea area and a good agreement with field measurements is obtained.展开更多
The Tianshan Mountains,located in the northwestern China,are bounded by the Tarim Basin to south and the Junggar Basin to north.In the north piedmont of this mountain range,ongoing thrusting and folding forms a set of...The Tianshan Mountains,located in the northwestern China,are bounded by the Tarim Basin to south and the Junggar Basin to north.In the north piedmont of this mountain range,ongoing thrusting and folding forms a set of roughly parallel anticlines.Geological observations predicted that averaged over last^1 Ma time scale,the shortening rates of these anticlines are about2.1–5.5 mm/a;However by averaged over about 10±2 kyr,their shortening rates reduce to merely about 1.25±0.5 mm/a.The slow shortening of the anticlines in the last^10±2 kyr is coarsely concurrent in time with the last global deglaciation.Here,we use a two-dimensional finite element model to explore crustal deformation across north piedmont of the Tianshan Mountains under various erosion-sedimentation conditions that are assumed to represent the climate-controlled surface process.Numerical experiments show that with a relatively weak erosion-sedimentation strength,the crustal shortening is accommodated mainly by north piedmont of the Tianshan Mountains,similar to the high shortening rate of anticlines averaged over the last^1Ma.By increasing erosion-sedimentation strength,the resultant crustal shortening is transformed gradually toward the Tianshan Mountains,resulting in the shortening rate in its north piedmont being decelerated to what is observed as averaged over the last^10±2 kyr.This result suggests that erosion and sedimentation could play an important role mechanically on strain localization across an intra-continent active tectonic belt.Hence,if the climate change around the last global deglaciation could be simply representative to the enhancement of surface erosion and sedimentation across the pre-existed Tianshan Mountains and its foreland,our models indicate that the observed shortening-rate variations averaged over^1 Ma and^10±2kyr time scales around north piedmont of the Tianshan Mountains should be resulted from climate changes.展开更多
New data collected from twenty-six sites during 2008 inthe contaminated Site of National Interest (SIN) of Porto Marghera within the Lagoon of Venice (Italy), which has been affected by the presence of an industrial z...New data collected from twenty-six sites during 2008 inthe contaminated Site of National Interest (SIN) of Porto Marghera within the Lagoon of Venice (Italy), which has been affected by the presence of an industrial zone for the last 80 years, were compared with data from a campaign performed in the same site 30 years before (1976-1978). The SIN was found to be heavily polluted in the earlier study, and several tons of Hg and Zn are still stored in soils and industrial channel sediments, potentially affecting the lagoon part of the SIN. Bathymetric variations, grain-size, Hg and Zn content in sediments were analysed. The severe contamination of the late 1970s (Hg 1.7 μg/g;Zn 754 μg/g) had fallen by the late 2000s (Hg 0.9 μg/g;Zn 225 μg/g). The fall in Hg and Zn contamination over the 30-year period was mainly linked to the patterns of geomorphological change inside the SIN that affected two distinct sub-areas: 1) a stable-depositional (SD) area in the Northern part, which exerted a “dilution” effect on contaminants, with significant deposition (~11%) of coarse-grained sediments (63 - 8 μm), and 2) an area characterised by moderate-to-severe-erosion (MSE) to the South, which saw the loss (~13%) of pollutant-bearing fine-grained sediments (sion if hydrodynamic conditions change in the future. This study provides useful support to decision-making systems by helping to select hot-spots for remediation measures.展开更多
文摘为科学揭示梯级水库群运行对河流生态的影响,基于黄河上游实测水沙序列,采用IHA(Indicators of Hydrologic Alteration)指标体系,对比分析了不同工程运行时期黄河上游水文情势变化,运用多系列贡献率分割法,量化了不同影响因子对水文情势变化的贡献率。通过输沙率法结合断面淤积形态分析揭示了黄河上游河道冲淤演变。结果表明,黄河上游水库运行对河流径流及河道形态产生了深刻影响,进而影响了河流生态。水库运行后非汛期月均流量上升、汛期月均流量下降、高流量事件发生频率与流量减少,径流趋于平缓,且宁蒙河段泥沙淤积、断面形态趋于宽浅。分析表明水库运行是造成黄河上游兰州水文情势变化的主要原因,以及石嘴山、头道拐水文情势变化的重要原因,高流量事件的减少加剧了河道淤积,使河流生态朝不利方向演化,为维护黄河上游生态健康有必要实施生态调度,提高涨水期和洪水期下泄流量并制造高流量事件。研究为评估梯级水库运行的生态影响、指导梯级水库生态调度提供方向性参考。
基金National Key Basic Research and Development Program of China,No.2011CB403304National Science and Technology Supporting Plan of the Twelfth Five-year Plan,No.2012BAB02B02
文摘Based on an empirical sediment transport equation that reflects the characteristics of "more input, more output" for sediment-laden flow in rivers, a general sediment transport expression was developed, which can take into account the effects of upstream sediment input, previous cumulative sediment deposition, critical runoff for sediment initiation, and the differences in sediment particle sizes between the mainstream and tributaries. Then, sedi- ment load equations for non-flood and flood seasons for the sub-reaches from Bayangaole to Sanhuhekou and from Sanhuhekou to Toudaoguai, as well as the whole Inner Mongolia reach from Bayangaole to Toudaoguai, were formulated based on data collected between 1952 and 2010. The corresponding sediment deposition and the cumulative values at each river reach were calculated using the proposed sediment transport equations for the period 1952 to 2010 according to the principle of sediment conservation. Comparisons between the calculated and measured values using the proposed sediment load equations for the sub-reaches and the entire reach showed that the calculated sediment load and sediment deposition and the cor- responding cumulative values in the flood and non-flood seasons were in good agreement with the measured values. These results indicated that the proposed methods can be applied to calculate the sediment load and the associated sediment deposition in the flood and non-flood seasons for long-term trend analysis of sediment deposition in the Inner Mongolia reach of the Yellow River.
基金The Public Science and Technology Research Funds Projects of Ocean under contract Nos 200905001 and 201005019UNESCO-IHE Partnership Research Fund (UPaRF) under contract No.60038881the National Natural Science Foundation of China under contract No.50939003
文摘The rotary ring flume is used to study the silty sand movement in a periodic alternating current.Characteristics of sediment movement of different coasts in the tidal current are summarized.More detailed analysis of erosion-sedimentation function in a numerical simulation is made.The equilibrium sediment concentration is advanced.Based on the equilibrium sediment concentration,the seabed erosion-sedimentation index is derived and the seabed erosion-sedimentation calculation is analyzed.The seabed erosion-sedimentation index is used to calculate the seabed evolution of Yangshan sea area and a good agreement with field measurements is obtained.
基金supported by National Natural Science Foundation of China(Grant Nos.40474039,41030320)Chinese Academy of Sciences(Grant No.XDB030105)
文摘The Tianshan Mountains,located in the northwestern China,are bounded by the Tarim Basin to south and the Junggar Basin to north.In the north piedmont of this mountain range,ongoing thrusting and folding forms a set of roughly parallel anticlines.Geological observations predicted that averaged over last^1 Ma time scale,the shortening rates of these anticlines are about2.1–5.5 mm/a;However by averaged over about 10±2 kyr,their shortening rates reduce to merely about 1.25±0.5 mm/a.The slow shortening of the anticlines in the last^10±2 kyr is coarsely concurrent in time with the last global deglaciation.Here,we use a two-dimensional finite element model to explore crustal deformation across north piedmont of the Tianshan Mountains under various erosion-sedimentation conditions that are assumed to represent the climate-controlled surface process.Numerical experiments show that with a relatively weak erosion-sedimentation strength,the crustal shortening is accommodated mainly by north piedmont of the Tianshan Mountains,similar to the high shortening rate of anticlines averaged over the last^1Ma.By increasing erosion-sedimentation strength,the resultant crustal shortening is transformed gradually toward the Tianshan Mountains,resulting in the shortening rate in its north piedmont being decelerated to what is observed as averaged over the last^10±2 kyr.This result suggests that erosion and sedimentation could play an important role mechanically on strain localization across an intra-continent active tectonic belt.Hence,if the climate change around the last global deglaciation could be simply representative to the enhancement of surface erosion and sedimentation across the pre-existed Tianshan Mountains and its foreland,our models indicate that the observed shortening-rate variations averaged over^1 Ma and^10±2kyr time scales around north piedmont of the Tianshan Mountains should be resulted from climate changes.
文摘New data collected from twenty-six sites during 2008 inthe contaminated Site of National Interest (SIN) of Porto Marghera within the Lagoon of Venice (Italy), which has been affected by the presence of an industrial zone for the last 80 years, were compared with data from a campaign performed in the same site 30 years before (1976-1978). The SIN was found to be heavily polluted in the earlier study, and several tons of Hg and Zn are still stored in soils and industrial channel sediments, potentially affecting the lagoon part of the SIN. Bathymetric variations, grain-size, Hg and Zn content in sediments were analysed. The severe contamination of the late 1970s (Hg 1.7 μg/g;Zn 754 μg/g) had fallen by the late 2000s (Hg 0.9 μg/g;Zn 225 μg/g). The fall in Hg and Zn contamination over the 30-year period was mainly linked to the patterns of geomorphological change inside the SIN that affected two distinct sub-areas: 1) a stable-depositional (SD) area in the Northern part, which exerted a “dilution” effect on contaminants, with significant deposition (~11%) of coarse-grained sediments (63 - 8 μm), and 2) an area characterised by moderate-to-severe-erosion (MSE) to the South, which saw the loss (~13%) of pollutant-bearing fine-grained sediments (sion if hydrodynamic conditions change in the future. This study provides useful support to decision-making systems by helping to select hot-spots for remediation measures.