The equations of motion of an insect with flapping wings are derived and then simplified to that of a flying body using the "rigid body" assumption. On the basis of the simplified equations of motion, the longitudin...The equations of motion of an insect with flapping wings are derived and then simplified to that of a flying body using the "rigid body" assumption. On the basis of the simplified equations of motion, the longitudinal dynamic flight stability of four insects (hoverfly, cranefly, dronefly and hawkmoth) in hovering flight is studied (the mass of the insects ranging from 11 to 1,648 mg and wingbeat frequency from 26 to 157Hz). The method of computational fluid dynamics is used to compute the aerodynamic derivatives and the techniques of eigenvalue and eigenvector analysis are used to solve the equations of motion. The validity of the "rigid body" assumption is tested and how differences in size and wing kinematics influence the applicability of the "rigid body" assumption is investigated. The primary findings are: (1) For insects considered in the present study and those with relatively high wingbeat frequency (hoverfly, drone fly and bumblebee), the "rigid body" assumption is reasonable, and for those with relatively low wingbeat frequency (cranefly and howkmoth), the applicability of the "rigid body" assumption is questionable. (2) The same three natural modes of motion as those reported recently for a bumblebee are identified, i.e., one unstable oscillatory mode, one stable fast subsidence mode and one stable slow subsidence mode. (3) Approximate analytical expressions of the eigenvalues, which give physical insight into the genesis of the natural modes of motion, are derived. The expressions identify the speed derivative Mu (pitching moment produced by unit horizontal speed) as the primary source of the unstable oscillatory mode and the stable fast subsidence mode and Zw (vertical force produced by unit vertical speed) as the primary source of the stable slow subsidence mode.展开更多
基金The project supported by the National Natural Science Foundation of China(10232010 and 10472008)
文摘The equations of motion of an insect with flapping wings are derived and then simplified to that of a flying body using the "rigid body" assumption. On the basis of the simplified equations of motion, the longitudinal dynamic flight stability of four insects (hoverfly, cranefly, dronefly and hawkmoth) in hovering flight is studied (the mass of the insects ranging from 11 to 1,648 mg and wingbeat frequency from 26 to 157Hz). The method of computational fluid dynamics is used to compute the aerodynamic derivatives and the techniques of eigenvalue and eigenvector analysis are used to solve the equations of motion. The validity of the "rigid body" assumption is tested and how differences in size and wing kinematics influence the applicability of the "rigid body" assumption is investigated. The primary findings are: (1) For insects considered in the present study and those with relatively high wingbeat frequency (hoverfly, drone fly and bumblebee), the "rigid body" assumption is reasonable, and for those with relatively low wingbeat frequency (cranefly and howkmoth), the applicability of the "rigid body" assumption is questionable. (2) The same three natural modes of motion as those reported recently for a bumblebee are identified, i.e., one unstable oscillatory mode, one stable fast subsidence mode and one stable slow subsidence mode. (3) Approximate analytical expressions of the eigenvalues, which give physical insight into the genesis of the natural modes of motion, are derived. The expressions identify the speed derivative Mu (pitching moment produced by unit horizontal speed) as the primary source of the unstable oscillatory mode and the stable fast subsidence mode and Zw (vertical force produced by unit vertical speed) as the primary source of the stable slow subsidence mode.