Helicobacter pylori(H.pylori)gamma-glutamyl transpeptidase(GGT)is a bacterial virulence factor that converts glutamine into glutamate and ammonia,and converts glutathione into glutamate and cysteinylglycine.H.pylori G...Helicobacter pylori(H.pylori)gamma-glutamyl transpeptidase(GGT)is a bacterial virulence factor that converts glutamine into glutamate and ammonia,and converts glutathione into glutamate and cysteinylglycine.H.pylori GGT causes glutamine and glutathione consumption in the host cells,ammonia production and reactive oxygen species generation.These products induce cell-cycle arrest,apoptosis,and necrosis in gastric epithelial cells.H.pylori GGT may also inhibit apoptosis and induce gastric epithelial cell proliferation through the induction of cyclooxygenase-2,epidermal growth factor-related peptides,inducible nitric oxide synthase and interleukin-8.H.pylori GGT induces immune tolerance through the inhibition of T cell-mediated immunity and dendritic cell differentiation.The effect of GGT on H.pylori colonization and gastric persistence are also discussed.展开更多
BACKGROUND Diabetic kidney disease(DKD)is a major complication of diabetes mellitus.Renal tubular epithelial cell(TEC)damage,which is strongly associated with the inflammatory response and mesenchymal trans-differenti...BACKGROUND Diabetic kidney disease(DKD)is a major complication of diabetes mellitus.Renal tubular epithelial cell(TEC)damage,which is strongly associated with the inflammatory response and mesenchymal trans-differentiation,plays a significant role in DKD;However,the precise molecular mechanism is unknown.The recently identified microRNA-630(miR-630)has been hypothesized to be closely associated with cell migration,apoptosis,and autophagy.However,the association between miR-630 and DKD and the underlying mechanism remain unknown.AIM To investigate how miR-630 affects TEC injury and the inflammatory response in DKD rats.METHODS Streptozotocin was administered to six-week-old male rats to create a hypergly cemic diabetic model.In the second week of modeling,the rats were divided into control,DKD,negative control of lentivirus,and miR-630 overexpression groups.After 8 wk,urine and blood samples were collected for the kidney injury assays,and renal tissues were removed for further molecular assays.The target gene for miR-630 was predicted using bioinformatics,and the association between miR-630 and toll-like receptor 4(TLR4)was confirmed using in vitro investigations and double luciferase reporter gene assays.Overexpression of miR-630 in DKD rats led to changes in body weight,renal weight index,basic blood parameters and histopathological changes.RESULTS The expression level of miR-630 was reduced in the kidney tissue of rats with DKD(P<0.05).The miR-630 and TLR4 expressions in rat renal TECs(NRK-52E)were measured using quantitative reverse transcription polymerase chain reaction.The mRNA expression level of miR-630 was significantly lower in the high-glucose(HG)and HG+mimic negative control(NC)groups than in the normal glucose(NG)group(P<0.05).In contrast,the mRNA expression level of TLR4 was significantly higher in these groups(P<0.05).However,miR-630 mRNA expression increased and TLR4 mRNA expression significantly decreased in the HG+miR-630 mimic group than in the HG+mimic NC group(P<0.05).Furthermore,the levels o展开更多
Diabetic nephropathy (DN) is one of the most common microvascular complications in diabetes mellitus patients and is characterized by thickened glomeruIar basement membrane, increased extracellular matrix formation,...Diabetic nephropathy (DN) is one of the most common microvascular complications in diabetes mellitus patients and is characterized by thickened glomeruIar basement membrane, increased extracellular matrix formation, and podocyte loss. These phenomena lead to proteinuria and altered glomerular filtration rate, that is, the rate initially increases but progressively decreases. DN has become the leading cause of end-stage renal disease. Its prevalence shows a rapid growth trend and causes heavy social and economic burden in many countries. However, this disease is multifactorial, and its mechanism is poorly understood due to the complex pathogenesis of DN. In this review, we highlight the new molecular insights about the pathogenesis of DN from the aspects of immune inflammation response, epithelial-mesenchymal transition, apoptosis and mitochondrial damage, epigenetics, and podocyte-endothelial communication. This work offers groundwork for understanding the initiation and progression of DN, as well as provides ideas for developing new prevention and treatment measures.展开更多
Lipopolysaccharide(LPS) was selected as a stimulus to investigate its effect on cell viability and oxidative stress in bovine mammary epithelial cells(BMEC) by detecting the cell relative growth rate(RGR),antioxidant ...Lipopolysaccharide(LPS) was selected as a stimulus to investigate its effect on cell viability and oxidative stress in bovine mammary epithelial cells(BMEC) by detecting the cell relative growth rate(RGR),antioxidant indicators and inflammatory factors. This information was used to provide the theoretical basis for the establishment of a LPS-induced oxidative damage model. The experiment was divided into two parts. The first part used a two-factor experimental design to determine the appropriate incubation time of LPS by detecting the RGR. The third-passage BMEC were divided into 24 groups with six replicates in each group. The first factor was LPS concentration, which was 0(control), 0.1,1.0 and 10.0 μg/mL;the second factor was LPS incubation time(2,4, 6, 8,12 and 24 h). The optimum LPS incubation time was6 h according to the results of the first part of the experiment. The second part of the experiment was conducted using a single-factor experimental design, and the third-passage cells were divided into four groups with six replicates in each group. The cells were incubated with culture medium containing different concentrations of LPS(0 [control], 0.1, 1.0 and 10.0 μg/mL) for 6 h to select the appropriate concentration of LPS to measure the antioxidant indicators and inflammatory factors. The results showed the RGR was significantly reduced as the concentration of LPS and the incubation time increased;the interaction between concentration and incubation time was also significant. The cells treated with0.1 μg/mL of LPS for 6 h had no significant difference in the activities of glutathione peroxidase(GPx) and superoxide dismutase(SOD)(P > 0.05) compared with the cells in the control group. On the contrary,catalase(CAT) activity and malondialdehyde(MDA) content were markedly lower and higher, respectively, in the 0.1 μg/mL LPS-treated group for 6 h compared with the control group(P < 0.05). The activities of GPx, CAT and SOD in the BMEC treated with 1.0 or 10.0 μg/mL of LPS were significantly lower compared 展开更多
基金Supported by Italian Ministry for University and Research(Progetto di Ricerca di Interesse Nazionale No.2009A37C8C_002,to Ricci V)Fondazione Cariplo Grant(No.2011-0485 to Ricci V)+2 种基金Second University of Naples(CIRANAD to Romano M)University of Naples "Federico Ⅱ"(Fondo d’Ateneo per la Ricercato Zarrilli R)
文摘Helicobacter pylori(H.pylori)gamma-glutamyl transpeptidase(GGT)is a bacterial virulence factor that converts glutamine into glutamate and ammonia,and converts glutathione into glutamate and cysteinylglycine.H.pylori GGT causes glutamine and glutathione consumption in the host cells,ammonia production and reactive oxygen species generation.These products induce cell-cycle arrest,apoptosis,and necrosis in gastric epithelial cells.H.pylori GGT may also inhibit apoptosis and induce gastric epithelial cell proliferation through the induction of cyclooxygenase-2,epidermal growth factor-related peptides,inducible nitric oxide synthase and interleukin-8.H.pylori GGT induces immune tolerance through the inhibition of T cell-mediated immunity and dendritic cell differentiation.The effect of GGT on H.pylori colonization and gastric persistence are also discussed.
基金Supported by the Huadong Medicine Joint Funds of the Zhejiang Provincial Natural Science Foundation of China,No.LHDMZ22H050001the Construction of Key Projects by Zhejiang Provincial Ministry,No.WKJ-ZJ-2302+3 种基金the Zhejiang Province Chinese Medicine Modernization Program,No.2020ZX001the Key Project of Scientific Research Foundation of Chinese Medicine,No.2022ZZ002the“Pioneer”and“LeadingGoose”R&D Program of Zhejiang,No.2022C03118 and 2023C03075the Key Project of Basic Scientific Research Operating Funds of Hangzhou Medical College,No.KYZD202002.
文摘BACKGROUND Diabetic kidney disease(DKD)is a major complication of diabetes mellitus.Renal tubular epithelial cell(TEC)damage,which is strongly associated with the inflammatory response and mesenchymal trans-differentiation,plays a significant role in DKD;However,the precise molecular mechanism is unknown.The recently identified microRNA-630(miR-630)has been hypothesized to be closely associated with cell migration,apoptosis,and autophagy.However,the association between miR-630 and DKD and the underlying mechanism remain unknown.AIM To investigate how miR-630 affects TEC injury and the inflammatory response in DKD rats.METHODS Streptozotocin was administered to six-week-old male rats to create a hypergly cemic diabetic model.In the second week of modeling,the rats were divided into control,DKD,negative control of lentivirus,and miR-630 overexpression groups.After 8 wk,urine and blood samples were collected for the kidney injury assays,and renal tissues were removed for further molecular assays.The target gene for miR-630 was predicted using bioinformatics,and the association between miR-630 and toll-like receptor 4(TLR4)was confirmed using in vitro investigations and double luciferase reporter gene assays.Overexpression of miR-630 in DKD rats led to changes in body weight,renal weight index,basic blood parameters and histopathological changes.RESULTS The expression level of miR-630 was reduced in the kidney tissue of rats with DKD(P<0.05).The miR-630 and TLR4 expressions in rat renal TECs(NRK-52E)were measured using quantitative reverse transcription polymerase chain reaction.The mRNA expression level of miR-630 was significantly lower in the high-glucose(HG)and HG+mimic negative control(NC)groups than in the normal glucose(NG)group(P<0.05).In contrast,the mRNA expression level of TLR4 was significantly higher in these groups(P<0.05).However,miR-630 mRNA expression increased and TLR4 mRNA expression significantly decreased in the HG+miR-630 mimic group than in the HG+mimic NC group(P<0.05).Furthermore,the levels o
文摘Diabetic nephropathy (DN) is one of the most common microvascular complications in diabetes mellitus patients and is characterized by thickened glomeruIar basement membrane, increased extracellular matrix formation, and podocyte loss. These phenomena lead to proteinuria and altered glomerular filtration rate, that is, the rate initially increases but progressively decreases. DN has become the leading cause of end-stage renal disease. Its prevalence shows a rapid growth trend and causes heavy social and economic burden in many countries. However, this disease is multifactorial, and its mechanism is poorly understood due to the complex pathogenesis of DN. In this review, we highlight the new molecular insights about the pathogenesis of DN from the aspects of immune inflammation response, epithelial-mesenchymal transition, apoptosis and mitochondrial damage, epigenetics, and podocyte-endothelial communication. This work offers groundwork for understanding the initiation and progression of DN, as well as provides ideas for developing new prevention and treatment measures.
基金supported by the National Natural Science Foundation of China (Project No. 31160466)
文摘Lipopolysaccharide(LPS) was selected as a stimulus to investigate its effect on cell viability and oxidative stress in bovine mammary epithelial cells(BMEC) by detecting the cell relative growth rate(RGR),antioxidant indicators and inflammatory factors. This information was used to provide the theoretical basis for the establishment of a LPS-induced oxidative damage model. The experiment was divided into two parts. The first part used a two-factor experimental design to determine the appropriate incubation time of LPS by detecting the RGR. The third-passage BMEC were divided into 24 groups with six replicates in each group. The first factor was LPS concentration, which was 0(control), 0.1,1.0 and 10.0 μg/mL;the second factor was LPS incubation time(2,4, 6, 8,12 and 24 h). The optimum LPS incubation time was6 h according to the results of the first part of the experiment. The second part of the experiment was conducted using a single-factor experimental design, and the third-passage cells were divided into four groups with six replicates in each group. The cells were incubated with culture medium containing different concentrations of LPS(0 [control], 0.1, 1.0 and 10.0 μg/mL) for 6 h to select the appropriate concentration of LPS to measure the antioxidant indicators and inflammatory factors. The results showed the RGR was significantly reduced as the concentration of LPS and the incubation time increased;the interaction between concentration and incubation time was also significant. The cells treated with0.1 μg/mL of LPS for 6 h had no significant difference in the activities of glutathione peroxidase(GPx) and superoxide dismutase(SOD)(P > 0.05) compared with the cells in the control group. On the contrary,catalase(CAT) activity and malondialdehyde(MDA) content were markedly lower and higher, respectively, in the 0.1 μg/mL LPS-treated group for 6 h compared with the control group(P < 0.05). The activities of GPx, CAT and SOD in the BMEC treated with 1.0 or 10.0 μg/mL of LPS were significantly lower compared