期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进深度置信网络的大棚冬枣病虫害预测模型
被引量:
28
1
作者
张善文
张传雷
丁军
《农业工程学报》
EI
CAS
CSCD
北大核心
2017年第19期202-208,共7页
导致冬枣病虫害发生的原因很多而且很复杂,利用传统的数学方法和神经网络(neural network,NN)很难建立正确的病虫害预测模型。由于典型的深度置信网络(deep belief network,DBN)的各层之间缺乏有监督训练,使得网络误差逐层向上传递,降...
导致冬枣病虫害发生的原因很多而且很复杂,利用传统的数学方法和神经网络(neural network,NN)很难建立正确的病虫害预测模型。由于典型的深度置信网络(deep belief network,DBN)的各层之间缺乏有监督训练,使得网络误差逐层向上传递,降低了预测模型的预测率。针对这些问题,引入冬枣病虫害的先验信息,提出一种基于环境信息和改进DBN的冬枣病虫害预测模型。在该模型中,通过无监督训练和有监督微调从冬枣生长的环境信息序列中获取可表征冬枣病虫害发生的深层特征的隐层参数,并形成新的特征集,然后在预测模型的顶层通过一个后向传播神经网络(back propagation neural network,BPNN)进行病虫害预测。从2014—2017年的4 a时间内,利用农业物联网传感器采集30个大棚冬枣常见的2种虫害和3种病害发生的环境信息序列6 000多条,由此验证所提出的预测模型,平均预测正确率高达84.05%。与基于强模糊支持向量机、改进型NN和BPNN的3种病虫害预测模型进行了试验比较,预测正确率提高了20多个百分点。试验结果表明,该模型极大提高了大棚冬枣病虫害的预测正确率。该研究可为大棚冬枣病虫害预测提供技术参考。
展开更多
关键词
病害
预测
模型
冬枣生长环境信息
虫害
深度置信网络
改进深度置信网络
下载PDF
职称材料
题名
基于改进深度置信网络的大棚冬枣病虫害预测模型
被引量:
28
1
作者
张善文
张传雷
丁军
机构
西京学院信息工程学院
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2017年第19期202-208,共7页
基金
国家自然科学基金项目(61473237)
陕西省自然科学基础研究计划(2016GY-141)
文摘
导致冬枣病虫害发生的原因很多而且很复杂,利用传统的数学方法和神经网络(neural network,NN)很难建立正确的病虫害预测模型。由于典型的深度置信网络(deep belief network,DBN)的各层之间缺乏有监督训练,使得网络误差逐层向上传递,降低了预测模型的预测率。针对这些问题,引入冬枣病虫害的先验信息,提出一种基于环境信息和改进DBN的冬枣病虫害预测模型。在该模型中,通过无监督训练和有监督微调从冬枣生长的环境信息序列中获取可表征冬枣病虫害发生的深层特征的隐层参数,并形成新的特征集,然后在预测模型的顶层通过一个后向传播神经网络(back propagation neural network,BPNN)进行病虫害预测。从2014—2017年的4 a时间内,利用农业物联网传感器采集30个大棚冬枣常见的2种虫害和3种病害发生的环境信息序列6 000多条,由此验证所提出的预测模型,平均预测正确率高达84.05%。与基于强模糊支持向量机、改进型NN和BPNN的3种病虫害预测模型进行了试验比较,预测正确率提高了20多个百分点。试验结果表明,该模型极大提高了大棚冬枣病虫害的预测正确率。该研究可为大棚冬枣病虫害预测提供技术参考。
关键词
病害
预测
模型
冬枣生长环境信息
虫害
深度置信网络
改进深度置信网络
Keywords
diseases
forecasting
models
environmental
information
of
winter
jujube
growth
insect
pests
deep
belief
network
(DBN)
modified
DBN
分类号
S436.65 [农业科学—农业昆虫与害虫防治]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进深度置信网络的大棚冬枣病虫害预测模型
张善文
张传雷
丁军
《农业工程学报》
EI
CAS
CSCD
北大核心
2017
28
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部