The dynamics of quantum discord for two identical qubits in two independent single-mode cavities and a common single-mode cavity are discussed. For the initial Bell state with correlated spins, while the entanglement ...The dynamics of quantum discord for two identical qubits in two independent single-mode cavities and a common single-mode cavity are discussed. For the initial Bell state with correlated spins, while the entanglement sudden death can occur, the quantum discord vanishes only at discrete moments in the independent cavities and never vanishes in the common cavity. Interestingly, quantum discord and entanglement show opposite behavior in the common cavity, unlike in the independent cavities. For the initial Bell state with anti-correlated spins, quantum discord and entanglement behave in the same way for both independent cavities and a common cavity. It is found that the detunings always stabilize the quantum discord.展开更多
We address the problem of encoding entanglement-assisted (EA) quantum error-correcting codes (QECCs) and of the corresponding complexity. We present an iterative algorithm from which a quantum circuit composed of ...We address the problem of encoding entanglement-assisted (EA) quantum error-correcting codes (QECCs) and of the corresponding complexity. We present an iterative algorithm from which a quantum circuit composed of CNOT, H, and S gates can be derived directly with complexity O(n2) to encode the qubits being sent. Moreover, we derive the number of each gate consumed in our algorithm according to which we can design EA QECCs with low encoding complexity. Another advantage brought by our algorithm is the easiness and efficiency of programming on classical computers.展开更多
We propose two simple and resource-economical schemes for remote preparation of four-partite atomic as well as cavity field cluster states. In the case of atomic state generation, we utilize simultaneous resonant and ...We propose two simple and resource-economical schemes for remote preparation of four-partite atomic as well as cavity field cluster states. In the case of atomic state generation, we utilize simultaneous resonant and dispersive interactions of the two two-level atoms at the preparation station. Atoms involved in these interactions are individually pair-wise entangled into two different tri-partite GHZ states. After interaction, the passage of the atoms through a Ramsey zone and their subsequent detection completes the protocol. However, for field state generation we first copy the quantum information in the cavities to the atoms by resonant interactions and then adapt the same method as in the case of atomic state generation. The method can be generalised to remotely generate any arbitrary graph states in a straightforward manner.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 11174254)the National Basic Research Program of China (Grant Nos. 2011CBA00103 and 2009CB929104)
文摘The dynamics of quantum discord for two identical qubits in two independent single-mode cavities and a common single-mode cavity are discussed. For the initial Bell state with correlated spins, while the entanglement sudden death can occur, the quantum discord vanishes only at discrete moments in the independent cavities and never vanishes in the common cavity. Interestingly, quantum discord and entanglement show opposite behavior in the common cavity, unlike in the independent cavities. For the initial Bell state with anti-correlated spins, quantum discord and entanglement behave in the same way for both independent cavities and a common cavity. It is found that the detunings always stabilize the quantum discord.
基金supported by the National Basic Research Program of China (Grant No.2010CB328300)the National Natural Science Foundation of China (Grant Nos.60972046 and 60902030)+4 种基金the Program for Changjiang Scholars and Innovative Research Team in University (Grant No.IRT0852)the Natural Science Foundation of Shaanxi Province (Grant No.2010JQ8025)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20100203120004)the 111 Program (Grant No.B08038)the China Scholarship Council (Grant No.[2008]3019)
文摘We address the problem of encoding entanglement-assisted (EA) quantum error-correcting codes (QECCs) and of the corresponding complexity. We present an iterative algorithm from which a quantum circuit composed of CNOT, H, and S gates can be derived directly with complexity O(n2) to encode the qubits being sent. Moreover, we derive the number of each gate consumed in our algorithm according to which we can design EA QECCs with low encoding complexity. Another advantage brought by our algorithm is the easiness and efficiency of programming on classical computers.
文摘We propose two simple and resource-economical schemes for remote preparation of four-partite atomic as well as cavity field cluster states. In the case of atomic state generation, we utilize simultaneous resonant and dispersive interactions of the two two-level atoms at the preparation station. Atoms involved in these interactions are individually pair-wise entangled into two different tri-partite GHZ states. After interaction, the passage of the atoms through a Ramsey zone and their subsequent detection completes the protocol. However, for field state generation we first copy the quantum information in the cavities to the atoms by resonant interactions and then adapt the same method as in the case of atomic state generation. The method can be generalised to remotely generate any arbitrary graph states in a straightforward manner.