A scheme is proposed for generating a three-atom maximal entanglement W state. It is based on the simultaneous nonresonant interaction of atoms with a single-mode cavity field. Our scheme is insensitive to the cavity ...A scheme is proposed for generating a three-atom maximal entanglement W state. It is based on the simultaneous nonresonant interaction of atoms with a single-mode cavity field. Our scheme is insensitive to the cavity field, so the cavity field in our scheme can be initially in thermal states.展开更多
A scheme for teleporting an arbitrary and unknown three-particle state from a sender to either one of two receivers is proposed. The quantum channel is composed of a two-particle non-maximally entangled state and two ...A scheme for teleporting an arbitrary and unknown three-particle state from a sender to either one of two receivers is proposed. The quantum channel is composed of a two-particle non-maximally entangled state and two three-particle non-maximally entangled W states. An arbitrary three-particle state can be perfectly teleported probabilistically if the sender performs three generalized Bell-state measurements and sends to the two receivers the classical result of these measurements, and either one of the two receivers adopts an appropriate unitary transformation conditioned on the suitable measurement outcomes of the other receiver. All kinds of unitary transformations are given in detail.展开更多
基金Project supported by the Science Foundation of Educational Committee of Fujian Province (Grant No JB05065).Acknowledgment The author is grateful to Professor Zheng ShiBiao for his helpful comments.
文摘A scheme is proposed for generating a three-atom maximal entanglement W state. It is based on the simultaneous nonresonant interaction of atoms with a single-mode cavity field. Our scheme is insensitive to the cavity field, so the cavity field in our scheme can be initially in thermal states.
文摘A scheme for teleporting an arbitrary and unknown three-particle state from a sender to either one of two receivers is proposed. The quantum channel is composed of a two-particle non-maximally entangled state and two three-particle non-maximally entangled W states. An arbitrary three-particle state can be perfectly teleported probabilistically if the sender performs three generalized Bell-state measurements and sends to the two receivers the classical result of these measurements, and either one of the two receivers adopts an appropriate unitary transformation conditioned on the suitable measurement outcomes of the other receiver. All kinds of unitary transformations are given in detail.