The integration of large-scale wind power brings challenges to the operation of integrated energy systems(IES).In this paper,a day-ahead scheduling model for IES with wind power and multi-type energy storage is propos...The integration of large-scale wind power brings challenges to the operation of integrated energy systems(IES).In this paper,a day-ahead scheduling model for IES with wind power and multi-type energy storage is proposed in a scenario-based stochastic programming framework.The structure of the IES consists of electricity,natural gas,and heating networks which are all included in the model.Operational constraints for IES incorporating multi-type energy storage devices are also considered.The constraints of the electricity network,natural gas network and heating network are formulated,and non-linear constraints are linearized.The calculation method for the correlation of wind speed between wind farms based on historical data is proposed.Uncertainties of correlated wind power were represented by creating multiple representative scenarios with different probabilities,and this was done using the Latin hyper-cube sampling(LHS)method.The stochastic scheduling model is formulated as a mixed integer linear programming(MILP)problem with the objective function of minimizing the total expected operation cost.Numerical results on a modified PJM 5-bus electricity system with a seven-node natural gas system and a six-node heating system validate the proposed model.The results demonstrate that multi-type energy storage devices can help reduce wind power curtailments and improve the operational flexibility of IES.展开更多
Restricted by their energy storage mechanism,current energy storage devices have certain drawbacks,such as low power density for batteries and low energy density for supercapacitors.Fortunately,the nearest ion capacit...Restricted by their energy storage mechanism,current energy storage devices have certain drawbacks,such as low power density for batteries and low energy density for supercapacitors.Fortunately,the nearest ion capacitors,such as lithium-ion and sodium-ion capacitors containing battery-type and capacitor-type electrodes,may allow achieving both high energy and power densities.For the inspiration,a new zinc-ion capacitor(ZIC)has been designed and realized by assembling the free-standing manganese dioxide-carbon nanotubes(MnO2-CNTs)battery-type cathode and MXene(Ti3C2Tx)capacitortype anode in an aqueous electrolyte.The ZIC can avoid the insecurity issues that frequently occurred in lithium-ion and sodium-ion capacitors in organic electrolytes.As expected,the ZIC in an aqueous liquid electrolyte exhibits excellent electrochemical performance(based on the total weight of cathode and anode),such as a high specific capacitance of 115.1 F g?1(1 mV s?1),high energy density of 98.6 Wh kg?1(77.5 W kg?1),high power density of 2480.6 W kg?1(29.7 Wh kg?1),and high capacitance retention of^83.6%of its initial capacitance(15,000 cycles).Even in an aqueous gel electrolyte,the ZIC also exhibits excellent performance.This work provides an essential strategy for designing next-generation high-performance energy storage devices.展开更多
That more than 82 percent of proved sandstone-type uranium deposits coexist with proved oil-gas or coalfields in the world reflects the fact of coexistence and accumulation of multi-energy minerals including oil,gas,c...That more than 82 percent of proved sandstone-type uranium deposits coexist with proved oil-gas or coalfields in the world reflects the fact of coexistence and accumulation of multi-energy minerals including oil,gas,coal and uranium in the same basin.Especially,this phenomenon is most typical in the Central-east Asia energy basins.Across China,Mongolia and some central Asian countries,the giant Central-east Asia metallogenetic domain(CEAMD)stretches more than 6,000 km from Songliao Basin of China in the east to the Caspian Sea in the west.The multi-energy minerals distribution characteristics of the domain include:their spatial distribution is complicated and ordered;the ore-bearing horizon relates closely to the geographical region;the accumulation/mineralization and localization time is the same or close;the occurrence setting and accumulation/mineralization have close correlation;and they have rich provenance for all the minerals.All of these imply that they have close relations between each other under a unified geodynamic background.The exogenetic uranium mineralization process in CEAMD can be divided into five phases using time limits of 100 Ma,(50±2)Ma,20±(2―4)Ma,8―5 Ma.The major mineralization periods and their differences in each primary uranium-bearing basin are identical to the oil-gas accumulation and localization periods and phases in the same basin,and are also in response to regional tectonics and controlled in general by the regional geodynamic environment.For industrial application and commercial exploitation,it is suggested that an important period for coexistence,accumulation and localization of oil,gas,coal and uranium and their interaction mainly occur in the late/last and post basin evolution.Through generalized analysis and comparison of accumulation/mineralization environment of the energy basins in CEAMD,the authors propose that the relatively stable regional tectonic background and moderate(weaker)structural deformation probably are necessary for formation,coexistence and preservat展开更多
A novel hybrid solar concentrating Photovoltaic/Thermal (CPV/T) system with beam splitting technique is presented. In this system, a beam splitter is used to separate the concentrated solar radiation into two parts: o...A novel hybrid solar concentrating Photovoltaic/Thermal (CPV/T) system with beam splitting technique is presented. In this system, a beam splitter is used to separate the concentrated solar radiation into two parts: one for the PV power generation and the other for thermal utility. The solar concentrator is a flat Fresnel-type concentrator with glass mirror reflectors. It can concentrate solar radiation onto solar cells with high uniformity, which is beneficial to improving the efficiency of solar cells. The thermal receiver is separated to the solar cells, and therefore, the thermal fluid can be heated to a relatively high temperature and does not affect the performance of solar cells. A dimensionless model was developed for the performance analysis of the concentrating system. The effects of the main parameters on the performance of the concentrator were analyzed. The beam splitter with coating materials Nb2O3 /SiO2 was designed by using the needle optimization technique, which can reflect about 71% of the undesired radiation for silicon cell(1.1m < 3m) to the thermal receiver for thermal utility. The performance of this CPV/T system was also theoretically analyzed.展开更多
Urban building energy modeling has become an efficient way to understand urban building energy use and explore energy conservation and emission reduction potential.This paper introduced a method to identify archetype ...Urban building energy modeling has become an efficient way to understand urban building energy use and explore energy conservation and emission reduction potential.This paper introduced a method to identify archetype buildings and generate urban building energy models for city-scale buildings where public building information was unavailable.A case study was conducted for 68,966 buildings in Changsha city,China.First,clustering and random forest methods were used to determine the building type of each building footprint based on different GIS datasets.Then,the convolutional neural network was employed to infer the year built of commercial buildings based on historical satellite images from multiple years.The year built of residential buildings was collected from the housing website.Moreover,twenty-two building types and three vintages were selected as archetype buildings to represent 59,332 buildings,covering 87.4%of the total floor area.Ruby scripts leveraging on OpenStudio-Standards were developed to generate building energy models for the archetype buildings.Finally,monthly and annual electricity and natural gas energy use were simulated for the blocks and the entire city by EnergyPlus.The total electricity and natural gas use for the 59,332 buildings was 13,864 GWh and 23.6×10^(6) GJ.Three energy conservation measures were evaluated to demonstrate urban energy saving potential.The proposed methods can be easily applied to other cities in China.展开更多
基金This paper was supported in part by National Natural Science Foundation of China(Grant No.51677022,51607033,and 51607034)National Key Research and Development Program of China(2017YFB0903400)+1 种基金Integrated Energy System Innovation Team of Jilin Province(20180519015JH)and International Clean Energy Talent Programme(iCET)of China Scholarship Council.
文摘The integration of large-scale wind power brings challenges to the operation of integrated energy systems(IES).In this paper,a day-ahead scheduling model for IES with wind power and multi-type energy storage is proposed in a scenario-based stochastic programming framework.The structure of the IES consists of electricity,natural gas,and heating networks which are all included in the model.Operational constraints for IES incorporating multi-type energy storage devices are also considered.The constraints of the electricity network,natural gas network and heating network are formulated,and non-linear constraints are linearized.The calculation method for the correlation of wind speed between wind farms based on historical data is proposed.Uncertainties of correlated wind power were represented by creating multiple representative scenarios with different probabilities,and this was done using the Latin hyper-cube sampling(LHS)method.The stochastic scheduling model is formulated as a mixed integer linear programming(MILP)problem with the objective function of minimizing the total expected operation cost.Numerical results on a modified PJM 5-bus electricity system with a seven-node natural gas system and a six-node heating system validate the proposed model.The results demonstrate that multi-type energy storage devices can help reduce wind power curtailments and improve the operational flexibility of IES.
基金supported by the Anhui Provincial Natural Science Foundation(1908085QF251)Foundation for the Introduction of High-Level Talents of Anhui University(S020118002/061)+1 种基金National Natural Science Foundation of China(11704002)Support Project of Outstanding Young Talents in Anhui Provincial Universities(gxyqZD2018006).
文摘Restricted by their energy storage mechanism,current energy storage devices have certain drawbacks,such as low power density for batteries and low energy density for supercapacitors.Fortunately,the nearest ion capacitors,such as lithium-ion and sodium-ion capacitors containing battery-type and capacitor-type electrodes,may allow achieving both high energy and power densities.For the inspiration,a new zinc-ion capacitor(ZIC)has been designed and realized by assembling the free-standing manganese dioxide-carbon nanotubes(MnO2-CNTs)battery-type cathode and MXene(Ti3C2Tx)capacitortype anode in an aqueous electrolyte.The ZIC can avoid the insecurity issues that frequently occurred in lithium-ion and sodium-ion capacitors in organic electrolytes.As expected,the ZIC in an aqueous liquid electrolyte exhibits excellent electrochemical performance(based on the total weight of cathode and anode),such as a high specific capacitance of 115.1 F g?1(1 mV s?1),high energy density of 98.6 Wh kg?1(77.5 W kg?1),high power density of 2480.6 W kg?1(29.7 Wh kg?1),and high capacitance retention of^83.6%of its initial capacitance(15,000 cycles).Even in an aqueous gel electrolyte,the ZIC also exhibits excellent performance.This work provides an essential strategy for designing next-generation high-performance energy storage devices.
基金Jointly supported by the National Important Basic Research Program of China(Grant No.2003CB214607)Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT0559)the National Natural Science Foundation of China(Grant No.40372096)
文摘That more than 82 percent of proved sandstone-type uranium deposits coexist with proved oil-gas or coalfields in the world reflects the fact of coexistence and accumulation of multi-energy minerals including oil,gas,coal and uranium in the same basin.Especially,this phenomenon is most typical in the Central-east Asia energy basins.Across China,Mongolia and some central Asian countries,the giant Central-east Asia metallogenetic domain(CEAMD)stretches more than 6,000 km from Songliao Basin of China in the east to the Caspian Sea in the west.The multi-energy minerals distribution characteristics of the domain include:their spatial distribution is complicated and ordered;the ore-bearing horizon relates closely to the geographical region;the accumulation/mineralization and localization time is the same or close;the occurrence setting and accumulation/mineralization have close correlation;and they have rich provenance for all the minerals.All of these imply that they have close relations between each other under a unified geodynamic background.The exogenetic uranium mineralization process in CEAMD can be divided into five phases using time limits of 100 Ma,(50±2)Ma,20±(2―4)Ma,8―5 Ma.The major mineralization periods and their differences in each primary uranium-bearing basin are identical to the oil-gas accumulation and localization periods and phases in the same basin,and are also in response to regional tectonics and controlled in general by the regional geodynamic environment.For industrial application and commercial exploitation,it is suggested that an important period for coexistence,accumulation and localization of oil,gas,coal and uranium and their interaction mainly occur in the late/last and post basin evolution.Through generalized analysis and comparison of accumulation/mineralization environment of the energy basins in CEAMD,the authors propose that the relatively stable regional tectonic background and moderate(weaker)structural deformation probably are necessary for formation,coexistence and preservat
基金supported by the National Basic Research Program of China ("973" Program), (Grantt No. 2010CB227305)the CAS Solar Energy Action Program (Grant No. CX2090130012)
文摘A novel hybrid solar concentrating Photovoltaic/Thermal (CPV/T) system with beam splitting technique is presented. In this system, a beam splitter is used to separate the concentrated solar radiation into two parts: one for the PV power generation and the other for thermal utility. The solar concentrator is a flat Fresnel-type concentrator with glass mirror reflectors. It can concentrate solar radiation onto solar cells with high uniformity, which is beneficial to improving the efficiency of solar cells. The thermal receiver is separated to the solar cells, and therefore, the thermal fluid can be heated to a relatively high temperature and does not affect the performance of solar cells. A dimensionless model was developed for the performance analysis of the concentrating system. The effects of the main parameters on the performance of the concentrator were analyzed. The beam splitter with coating materials Nb2O3 /SiO2 was designed by using the needle optimization technique, which can reflect about 71% of the undesired radiation for silicon cell(1.1m < 3m) to the thermal receiver for thermal utility. The performance of this CPV/T system was also theoretically analyzed.
基金This paper is supported by the National Natural Science Foundation of China(NSFC)through Grant No.51908204the Natural Science Foundation of Hunan Province of China through Grant No.2020JJ3008.
文摘Urban building energy modeling has become an efficient way to understand urban building energy use and explore energy conservation and emission reduction potential.This paper introduced a method to identify archetype buildings and generate urban building energy models for city-scale buildings where public building information was unavailable.A case study was conducted for 68,966 buildings in Changsha city,China.First,clustering and random forest methods were used to determine the building type of each building footprint based on different GIS datasets.Then,the convolutional neural network was employed to infer the year built of commercial buildings based on historical satellite images from multiple years.The year built of residential buildings was collected from the housing website.Moreover,twenty-two building types and three vintages were selected as archetype buildings to represent 59,332 buildings,covering 87.4%of the total floor area.Ruby scripts leveraging on OpenStudio-Standards were developed to generate building energy models for the archetype buildings.Finally,monthly and annual electricity and natural gas energy use were simulated for the blocks and the entire city by EnergyPlus.The total electricity and natural gas use for the 59,332 buildings was 13,864 GWh and 23.6×10^(6) GJ.Three energy conservation measures were evaluated to demonstrate urban energy saving potential.The proposed methods can be easily applied to other cities in China.