针对不同能源系统的多元异质性,建立了兼顾热力系统源–网–荷以及气网管道差异化能量惯性的电–热–气综合能源系统优化调度方法。首先,针对热惯性展开研究,为克服热传输延时连续性和调度时段离散化的矛盾,提出一种基于流量分段法的热...针对不同能源系统的多元异质性,建立了兼顾热力系统源–网–荷以及气网管道差异化能量惯性的电–热–气综合能源系统优化调度方法。首先,针对热惯性展开研究,为克服热传输延时连续性和调度时段离散化的矛盾,提出一种基于流量分段法的热网传输惯性模型,并将该方法引入热源侧的模型构建,进而结合负荷侧的建筑热惯性,共同构建了考虑源–网–荷多种热惯性的热力系统模型。其次,为刻画天然气网络气惯性的动态特征,利用虚拟节点构建稳态模型代替原有的暂态模型,避免了偏微分方程的直接求解,大福降低了计算的难度。最后,基于不同能量惯性全面精确的建模,并综合考虑了各子系统的网络约束和耦合约束,以系统运行成本最小为目标构建了电–热–气综合能源系统日前优化调度模型,并用混合整数线性规划(mixed integer linear programming,MILP)软件进行求解。结合具体算例,研究结果表明精细刻画热、气系统的差异化能量惯性,能够提高电–热–气综合能源系统运行的经济性和灵活性。展开更多
BACKGROUND Regional lymph node metastasis in patients with hepatocellular carcinoma(HCC)is not uncommon, and is often under-or misdiagnosed. Regional lymph node metastasis is associated with a negative prognosis in pa...BACKGROUND Regional lymph node metastasis in patients with hepatocellular carcinoma(HCC)is not uncommon, and is often under-or misdiagnosed. Regional lymph node metastasis is associated with a negative prognosis in patients with HCC, and surgical resection of lymph node metastasis is considered feasible and efficacious in improving the survival and prognosis. It is critical to characterize lymph node preoperatively. There is currently no consensus regarding the optimal method for the assessment of regional lymph nodes in patients with HCC.AIM To evaluate the diagnostic value of single source dual energy computed tomography(CT) in regional lymph node assessment for HCC patients.METHODS Forty-three patients with pathologically confirmed HCC who underwent partial hepatectomy with lymphadenectomy were retrospectively enrolled. All patients underwent dual-energy CT preoperatively. Regional lymph nodes(n = 156) were divided into either a metastatic(group P, n = 52) or a non-metastasis group(group N, n = 104), and further, according to pathology, divided into an active hepatitis(group P1, n = 34; group N1, n = 73) and a non-active hepatitis group(group P2, n = 18; group N2, n = 31). The maximal short axis diameter(MSAD),iodine concentration(IC), normalized IC(NIC), and the slope of the spectralcurve(λ_(HU)) of each group in the arterial phase(AP), portal phase(PP), and delayed phase(DP) were analyzed.RESULTS Analysis of the MSAD, IC, NIC, and λ_(HU) showed statistical differences between groups P and N(P < 0.05) during all three phases. To distinguish benign from metastatic lymph nodes, the diagnostic efficacy of IC, NIC, and λ_(HU) in the PP was the best among the three phases(AP, PP, and DP), with a sensitivity up to 81.9%,83.9%, and 81.8%, and a specificity up to 82.4%, 84.1% and 84.1%, respectively.The diagnostic value of combined analyses of MSAD with IC, NIC, or λ_(HU) in the PP was superior to the dual energy CT parameters alone, with a sensitivity up to84.5%, 86.9%, and 86.2%, and a specificity up to 83.0%, 展开更多
由于传感器网络中的节点能量受限,因此如何减少节点的能量开销成为路由协议的研究目标.文中提出了一种低能耗的双层数据分发(An Energy-based Two Tier Data Dissemination Model,E-TTDD)算法.该算法采用斜格组建单元,把源节点和汇聚节...由于传感器网络中的节点能量受限,因此如何减少节点的能量开销成为路由协议的研究目标.文中提出了一种低能耗的双层数据分发(An Energy-based Two Tier Data Dissemination Model,E-TTDD)算法.该算法采用斜格组建单元,把源节点和汇聚节点附近的转发节点连接成一条直线,然后在以这条直线为中心以一定间隔的两条平行线之间搜索转发节点,从而使查询路径的能量开销降低.最后用Matlab进行性能仿真.结果表明,E-TTDD算法与原有TTDD算法相比,能量开销降低了3倍,同时延长了网络生存周期.展开更多
Major consideration dimensions for the physical layer design of wireless sensor network (WSN) nodes is analyzed by comparing different wireless communication approaches, diverse mature standards, important radio fre...Major consideration dimensions for the physical layer design of wireless sensor network (WSN) nodes is analyzed by comparing different wireless communication approaches, diverse mature standards, important radio frequency (RF) parameters and various microcontroller unit (MCU) solutions. An implementation of the WSN node is presented with experimental results and a novel "one processor working at two frequencies" energy saving strategy. The lifetime estimation issue is analyzed with consideration to the periodical listen required by common WSN media access control (MAC) algorithms. It can be concluded that the startup time of the RF which determines the best sleep time ratio and the shortest backoff slot time of MAC, the RF frequency and modulation methods which determinate the RX and TX current, and the overall energy consumption of the dual frequency MCU SOC ( system on chip) are the most essential factors for the WSN node physical layer design.展开更多
文摘针对不同能源系统的多元异质性,建立了兼顾热力系统源–网–荷以及气网管道差异化能量惯性的电–热–气综合能源系统优化调度方法。首先,针对热惯性展开研究,为克服热传输延时连续性和调度时段离散化的矛盾,提出一种基于流量分段法的热网传输惯性模型,并将该方法引入热源侧的模型构建,进而结合负荷侧的建筑热惯性,共同构建了考虑源–网–荷多种热惯性的热力系统模型。其次,为刻画天然气网络气惯性的动态特征,利用虚拟节点构建稳态模型代替原有的暂态模型,避免了偏微分方程的直接求解,大福降低了计算的难度。最后,基于不同能量惯性全面精确的建模,并综合考虑了各子系统的网络约束和耦合约束,以系统运行成本最小为目标构建了电–热–气综合能源系统日前优化调度模型,并用混合整数线性规划(mixed integer linear programming,MILP)软件进行求解。结合具体算例,研究结果表明精细刻画热、气系统的差异化能量惯性,能够提高电–热–气综合能源系统运行的经济性和灵活性。
文摘BACKGROUND Regional lymph node metastasis in patients with hepatocellular carcinoma(HCC)is not uncommon, and is often under-or misdiagnosed. Regional lymph node metastasis is associated with a negative prognosis in patients with HCC, and surgical resection of lymph node metastasis is considered feasible and efficacious in improving the survival and prognosis. It is critical to characterize lymph node preoperatively. There is currently no consensus regarding the optimal method for the assessment of regional lymph nodes in patients with HCC.AIM To evaluate the diagnostic value of single source dual energy computed tomography(CT) in regional lymph node assessment for HCC patients.METHODS Forty-three patients with pathologically confirmed HCC who underwent partial hepatectomy with lymphadenectomy were retrospectively enrolled. All patients underwent dual-energy CT preoperatively. Regional lymph nodes(n = 156) were divided into either a metastatic(group P, n = 52) or a non-metastasis group(group N, n = 104), and further, according to pathology, divided into an active hepatitis(group P1, n = 34; group N1, n = 73) and a non-active hepatitis group(group P2, n = 18; group N2, n = 31). The maximal short axis diameter(MSAD),iodine concentration(IC), normalized IC(NIC), and the slope of the spectralcurve(λ_(HU)) of each group in the arterial phase(AP), portal phase(PP), and delayed phase(DP) were analyzed.RESULTS Analysis of the MSAD, IC, NIC, and λ_(HU) showed statistical differences between groups P and N(P < 0.05) during all three phases. To distinguish benign from metastatic lymph nodes, the diagnostic efficacy of IC, NIC, and λ_(HU) in the PP was the best among the three phases(AP, PP, and DP), with a sensitivity up to 81.9%,83.9%, and 81.8%, and a specificity up to 82.4%, 84.1% and 84.1%, respectively.The diagnostic value of combined analyses of MSAD with IC, NIC, or λ_(HU) in the PP was superior to the dual energy CT parameters alone, with a sensitivity up to84.5%, 86.9%, and 86.2%, and a specificity up to 83.0%,
文摘由于传感器网络中的节点能量受限,因此如何减少节点的能量开销成为路由协议的研究目标.文中提出了一种低能耗的双层数据分发(An Energy-based Two Tier Data Dissemination Model,E-TTDD)算法.该算法采用斜格组建单元,把源节点和汇聚节点附近的转发节点连接成一条直线,然后在以这条直线为中心以一定间隔的两条平行线之间搜索转发节点,从而使查询路径的能量开销降低.最后用Matlab进行性能仿真.结果表明,E-TTDD算法与原有TTDD算法相比,能量开销降低了3倍,同时延长了网络生存周期.
基金The National High Technology Research and Deve-lopment Program of China (863Program) (No.2003AA143040).
文摘Major consideration dimensions for the physical layer design of wireless sensor network (WSN) nodes is analyzed by comparing different wireless communication approaches, diverse mature standards, important radio frequency (RF) parameters and various microcontroller unit (MCU) solutions. An implementation of the WSN node is presented with experimental results and a novel "one processor working at two frequencies" energy saving strategy. The lifetime estimation issue is analyzed with consideration to the periodical listen required by common WSN media access control (MAC) algorithms. It can be concluded that the startup time of the RF which determines the best sleep time ratio and the shortest backoff slot time of MAC, the RF frequency and modulation methods which determinate the RX and TX current, and the overall energy consumption of the dual frequency MCU SOC ( system on chip) are the most essential factors for the WSN node physical layer design.