In this paper, we study how pixel size influences energy resolution for a proposed pixelated detector—a high sensitivity, low cost, and real-time radon monitor based on a Topmetal-Ⅱ^- time projection chamber(TPC). T...In this paper, we study how pixel size influences energy resolution for a proposed pixelated detector—a high sensitivity, low cost, and real-time radon monitor based on a Topmetal-Ⅱ^- time projection chamber(TPC). This monitor was designed to improve spatial resolution for detecting radon alpha particles using Topmetal-Ⅱ^- sensors assembled by a 0.35 lm CMOS integrated circuit process.Owing to concerns that small pixel size might have the side effect of worsening energy resolution due to lower signalto-noise ratio, a Geant4-based simulation was used to investigate the dependence of energy resolution on pixel sizes ranging from 60 to 600 lm. A non-monotonic trend in this region shows the combined effect of pixel size and threshold on pixels, analyzed by introducing an empirical expression. Pixel noise contributes 50 keV full-width at half-maximum energy resolution for 400 lm pixel size at 1–4σ threshold that is comparable to the energy resolution caused by energy fluctuations in the TPC ionization process( ~20 keV). The total energy resolution after combining both factors is estimated to be 54 keV for a pixel size of 400 lm at 1–4σ threshold. The analysis presented in this paper would help choosing suitable pixel size for future pixelated detectors.展开更多
基金supported by the National Natural Science Foundation of China(No.U1732271)
文摘In this paper, we study how pixel size influences energy resolution for a proposed pixelated detector—a high sensitivity, low cost, and real-time radon monitor based on a Topmetal-Ⅱ^- time projection chamber(TPC). This monitor was designed to improve spatial resolution for detecting radon alpha particles using Topmetal-Ⅱ^- sensors assembled by a 0.35 lm CMOS integrated circuit process.Owing to concerns that small pixel size might have the side effect of worsening energy resolution due to lower signalto-noise ratio, a Geant4-based simulation was used to investigate the dependence of energy resolution on pixel sizes ranging from 60 to 600 lm. A non-monotonic trend in this region shows the combined effect of pixel size and threshold on pixels, analyzed by introducing an empirical expression. Pixel noise contributes 50 keV full-width at half-maximum energy resolution for 400 lm pixel size at 1–4σ threshold that is comparable to the energy resolution caused by energy fluctuations in the TPC ionization process( ~20 keV). The total energy resolution after combining both factors is estimated to be 54 keV for a pixel size of 400 lm at 1–4σ threshold. The analysis presented in this paper would help choosing suitable pixel size for future pixelated detectors.