Under the background of the energy saving and emission reduction, more and more attention has been placed on investigating the energy efficiency of ships. The added resistance has been noted for being crucial in predi...Under the background of the energy saving and emission reduction, more and more attention has been placed on investigating the energy efficiency of ships. The added resistance has been noted for being crucial in predicting the decrease of speed on a ship operating at sea. Furthermore, it is also significant to investigate the added resistance for a ship functioning in short waves of large modern ships. The researcher presents an estimation formula for the calculation of an added resistance study in short waves derived from the reflection law. An improved method has been proposed to calculate the added resistance due to ship motions, which applies the radiated energy theory along with the strip method. This procedure is based on an extended integral equation (EIE) method, which was used for solving the hydrodynamic coefficients without effects of the irregular frequency. Next, a combined method was recommended for the estimation of added resistance for a ship in the whole wave length range. The comparison data with other experiments indicate the method presented in the paper provides satisfactory results for large blunt ship.展开更多
In our paper we demonstrate that the filtration equation used by Gorban’ et al. for determining the maximum efficiency of plane propellers of about 30 percent for free fluids plays no role in describing the flows in ...In our paper we demonstrate that the filtration equation used by Gorban’ et al. for determining the maximum efficiency of plane propellers of about 30 percent for free fluids plays no role in describing the flows in the atmospheric boundary layer (ABL) because the ABL is mainly governed by turbulent motions. We also demonstrate that the stream tube model customarily applied to derive the Rankine-Froude theorem must be corrected in the sense of Glauert to provide an appropriate value for the axial velocity at the rotor area. Including this correction leads to the Betz-Joukowsky limit, the maximum efficiency of 59.3 percent. Thus, Gorban’ et al.’s 30% value may be valid in water, but it has to be discarded for the atmosphere. We also show that Joukowsky’s constant circulation model leads to values of the maximum efficiency which are higher than the Betz-Jow-kowsky limit if the tip speed ratio is very low. Some of these values, however, have to be rejected for physical reasons. Based on Glauert’s optimum actuator disk, and the results of the blade-element analysis by Okulov and Sørensen we also illustrate that the maximum efficiency of propeller-type wind turbines depends on tip-speed ratio and the number of blades.展开更多
This work deals with incompressible two-dimensional viscous flow over a semi-infinite plate ac-cording to the approximations resulting from Prandtl boundary layer theory. The governing non-linear coupled partial diffe...This work deals with incompressible two-dimensional viscous flow over a semi-infinite plate ac-cording to the approximations resulting from Prandtl boundary layer theory. The governing non-linear coupled partial differential equations describing laminar flow are converted to a self-simi- lar type third order ordinary differential equation known as the Falkner-Skan equation. For the purposes of a numerical solution, the Falkner-Skan equation is converted to a system of first order ordinary differential equations. These are numerically addressed by the conventional shooting and bisection methods coupled with the Runge-Kutta technique. However the accompanying energy equation lends itself to a hybrid numerical finite element-boundary integral application. An appropriate complementary differential equation as well as the Green second identity paves the way for the integral representation of the energy equation. This is followed by a finite element-type discretization of the problem domain. Based on the quality of the results obtained herein, a strong case is made for a hybrid numerical scheme as a useful approach for the numerical resolution of boundary layer flows and species transport. Thanks to the sparsity of the resulting coefficient matrix, the solution profiles not only agree with those of similar problems in literature but also are in consonance with the physics they represent.展开更多
The solution of Nekrasov’s integral equation is described. By means of this solution the wave kinetic, potential, and full mechanical energies are defined as functions of fluid depth and wavelength. The wave obeys th...The solution of Nekrasov’s integral equation is described. By means of this solution the wave kinetic, potential, and full mechanical energies are defined as functions of fluid depth and wavelength. The wave obeys the laws of mass and energy conservation. It is found that for any constant depth of fluid the wavelength is bounded from above by a value denoted as maximal wavelength. At maximal wavelength 1) the maximum slope of the free surface of the wave exceeds 38o and the value 45o is supposed attainable,2) the wave kinetic energy vanishes. The stability of a steady wave considered as a compound pendulum is analyzed.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.51079032 the Outstanding Youth Science Foundation of Heilongjiang Province,No.200908
文摘Under the background of the energy saving and emission reduction, more and more attention has been placed on investigating the energy efficiency of ships. The added resistance has been noted for being crucial in predicting the decrease of speed on a ship operating at sea. Furthermore, it is also significant to investigate the added resistance for a ship functioning in short waves of large modern ships. The researcher presents an estimation formula for the calculation of an added resistance study in short waves derived from the reflection law. An improved method has been proposed to calculate the added resistance due to ship motions, which applies the radiated energy theory along with the strip method. This procedure is based on an extended integral equation (EIE) method, which was used for solving the hydrodynamic coefficients without effects of the irregular frequency. Next, a combined method was recommended for the estimation of added resistance for a ship in the whole wave length range. The comparison data with other experiments indicate the method presented in the paper provides satisfactory results for large blunt ship.
文摘In our paper we demonstrate that the filtration equation used by Gorban’ et al. for determining the maximum efficiency of plane propellers of about 30 percent for free fluids plays no role in describing the flows in the atmospheric boundary layer (ABL) because the ABL is mainly governed by turbulent motions. We also demonstrate that the stream tube model customarily applied to derive the Rankine-Froude theorem must be corrected in the sense of Glauert to provide an appropriate value for the axial velocity at the rotor area. Including this correction leads to the Betz-Joukowsky limit, the maximum efficiency of 59.3 percent. Thus, Gorban’ et al.’s 30% value may be valid in water, but it has to be discarded for the atmosphere. We also show that Joukowsky’s constant circulation model leads to values of the maximum efficiency which are higher than the Betz-Jow-kowsky limit if the tip speed ratio is very low. Some of these values, however, have to be rejected for physical reasons. Based on Glauert’s optimum actuator disk, and the results of the blade-element analysis by Okulov and Sørensen we also illustrate that the maximum efficiency of propeller-type wind turbines depends on tip-speed ratio and the number of blades.
文摘This work deals with incompressible two-dimensional viscous flow over a semi-infinite plate ac-cording to the approximations resulting from Prandtl boundary layer theory. The governing non-linear coupled partial differential equations describing laminar flow are converted to a self-simi- lar type third order ordinary differential equation known as the Falkner-Skan equation. For the purposes of a numerical solution, the Falkner-Skan equation is converted to a system of first order ordinary differential equations. These are numerically addressed by the conventional shooting and bisection methods coupled with the Runge-Kutta technique. However the accompanying energy equation lends itself to a hybrid numerical finite element-boundary integral application. An appropriate complementary differential equation as well as the Green second identity paves the way for the integral representation of the energy equation. This is followed by a finite element-type discretization of the problem domain. Based on the quality of the results obtained herein, a strong case is made for a hybrid numerical scheme as a useful approach for the numerical resolution of boundary layer flows and species transport. Thanks to the sparsity of the resulting coefficient matrix, the solution profiles not only agree with those of similar problems in literature but also are in consonance with the physics they represent.
文摘The solution of Nekrasov’s integral equation is described. By means of this solution the wave kinetic, potential, and full mechanical energies are defined as functions of fluid depth and wavelength. The wave obeys the laws of mass and energy conservation. It is found that for any constant depth of fluid the wavelength is bounded from above by a value denoted as maximal wavelength. At maximal wavelength 1) the maximum slope of the free surface of the wave exceeds 38o and the value 45o is supposed attainable,2) the wave kinetic energy vanishes. The stability of a steady wave considered as a compound pendulum is analyzed.