The pitch-angle distribution of energetic particles is important for space physics studies on magnetic storm and particle acceleration.A‘pin-hole’imaging structure is built with the‘pin-hole’technique and a positi...The pitch-angle distribution of energetic particles is important for space physics studies on magnetic storm and particle acceleration.A‘pin-hole’imaging structure is built with the‘pin-hole’technique and a position sensitive detector,which can be used to measure the pitch angle distribution of energetic particles.To calibrate the angular response of the‘pin-hole’imaging structure,special experiment facilities are needed,such as the particle accelerator with special design.The features of this kind of particle accelerator are:1)The energy range of the outgoing particles should be mid-energy particles(tens keV to several hundred keV);2)the particle flux should be consistent in time-scale;3)the directions of the outgoing particles should be the same and 4)the particle number within the spot should be low enough.In this paper,a method to calibrate the angular response of the‘pin-hole’imaging structure by the90Sr/90Y β source with a collimator is introduced and simulated by Geant4 software.The result of the calibration with the collimated β source is in accord with the Geant4 simulations,which verifies the validity of this method.展开更多
In cases where substorm injections can be observed simultaneously by multiple spacecraft,they can help elucidate the potential mechanisms of particle transport and energization,of great importance to understanding and...In cases where substorm injections can be observed simultaneously by multiple spacecraft,they can help elucidate the potential mechanisms of particle transport and energization,of great importance to understanding and modeling the magnetosphere.In this paper,using data returned from the BeiDa-IES(BD-IES) instrument onboard a satellite in an inclined(55°) geosynchronous orbit(IGSO),in combination with two geo-transfer orbiting(GTO) satellite Van Allen Probes(A and B),we analyze a substorm injection event that occurred on the 16 th of October 2015.During this substorm injection,the IGSO onboard BD-IES was outbound,while both Van Allen Probe satellites(A and B) were inbound,a configuration of multiple trajectories that provides a unique opportunity to simultaneously investigate both the inward and outward radial propagation of substorm injection.Indicated by AE/AL indices,this substorm was closely related to an IMF/solar wind discontinuity that showed a sharp change in IMF Bz direction to the north.The innermost signature of this substorm injection was detected by Van Allen Probes A and B at L-3.7,while the outermost signature was observed by the onboard BD-IES instrument at L-10.These data indicate that the substorm had a global,rather than just local,effect.Finally,we suggest that electric fields carried by fast-mode compressional waves around the substorm injection are the most likely candidate mechanism for the electron injection signatures observed in the inner- and outermost inner magnetosphere.展开更多
The measurement of energetic particles plays an important role in the space environment monitoring and space weather forecasting.The accuracy of the energetic electron measurement is seriously influenced by the proton...The measurement of energetic particles plays an important role in the space environment monitoring and space weather forecasting.The accuracy of the energetic electron measurement is seriously influenced by the proton contamination.An anti-proton contamination design for the sensor of imaging energetic electron spectrometer is introduced in this paper.According to the electron and proton spectrum on the typical satellite orbits calculated by the radiation belt models,the efficiency of the anti-proton contamination design is estimated by the Geant4 simulation and the design is optimized based on the simulation results.展开更多
Based on the knowledge and related theory of earth’s radiation belt, the data of energetic particles observed by detectors onboard ‘CBERS-1’ satellite at a solar syn- chronous orbit were analyzed. It is proved that...Based on the knowledge and related theory of earth’s radiation belt, the data of energetic particles observed by detectors onboard ‘CBERS-1’ satellite at a solar syn- chronous orbit were analyzed. It is proved that the observational results are in agreement with the theoretical description of the radiation belt structures. Analysis of more than 3 years’ data showed clearly that under quiet solar conditions, at a height of about 800 km the energetic particles were mainly located in three regions: northern auroral belt (40°― 80°), southern auroral belt (?40°― ?80°) and South Atlantic Geomagnetic Anomaly Re- gion (SAA). Actually, this is for the global distribution, at each longitude the latitudinal coverage is much narrower and particles are along the geomagnetic latitude of about ±60°. The species of particles in different regions and their counting rates are different. In SAA, usually both electrons and protons are observed, which should come from inner radiation belt; in polar regions only energetic electrons are observed under the quiet condition, which belongs to the outer radiation belt. The distribution of outer radiation electrons is asymmetrical for longitudes as well as northern and southern polar regions. These asymmetries can be explained with the reflecting altitudes of the mirror points of charged particles at the same L shell.展开更多
In a tokamak fusion reactor operated at steady state,the equilibrium magnetic field is likely to have reversed shear in the core region,as the noninductive bootstrap current profile generally peaks off-axis.The revers...In a tokamak fusion reactor operated at steady state,the equilibrium magnetic field is likely to have reversed shear in the core region,as the noninductive bootstrap current profile generally peaks off-axis.The reversed shear Alfvén eigenmode(RSAE)as a unique branch of the shear Alfvén wave in this equilibrium,can exist with a broad spectrum in wavenumber and frequency,and be resonantly driven unstable by energetic particles(EP).After briefly discussing the RSAE linear properties in burning plasma condition,we review several key topics of the nonlinear dynamics for the RSAE through both wave-EP resonance and wave-wave coupling channels,and illustrate their potentially important role in reactor-scale fusion plasmas.By means of simplified hybrid MHD-kinetic simulations,the RSAEs are shown to have typically broad phase space resonance structure with both circulating and trapped EP,as results of weak/vanishing magnetic shear and relatively low frequency.Through the route of wave-EP nonlinearity,the dominant saturation mechanism is mainly due to the transported resonant EP radially decoupling with the localized RSAE mode structure,and the resultant EP transport generally has a convective feature.The saturated RSAEs also undergo various nonlinear couplings with other collective oscillations.Two typical routes as parametric decay and modulational instability are studied using nonlinear gyrokinetic theory,and applied to the scenario of spontaneous excitation by a finite amplitude pump RSAE.Multiple RSAEs could naturally couple and induce the spectral energy cascade into a low frequency Alfvénic mode,which may effectively transfer the EP energy to fuel ions via collisionless Landau damping.Moreover,zero frequency zonal field structure could be spontaneously excited by modulation of the pump RSAE envelope,and may also lead to saturation of the pump RSAE by both scattering into stable domain and local distortion of the continuum structure.展开更多
Cross-calibration of high energetic particle data is a primary requirement for the availability of multi-instrument, multi-spacecraft data. II also can provide a method to verify relative reliability of data from sing...Cross-calibration of high energetic particle data is a primary requirement for the availability of multi-instrument, multi-spacecraft data. II also can provide a method to verify relative reliability of data from single satellite measurement. This pa- per presents a case study of energetic particles data cross-calibration between FY-3B and NOAA-17. A generally good agree- ment is acquired in the flux values and distribution trend of 2.5-6.9 MeV protons and 0.3-1.1 MeV electrons between FY-3B and NOAA-17 satellites. It suggests that the data observed by FY-3B is properly cross-calibrated. We can also confirm that energetic particles data observed by FY-3B satellite is available.展开更多
High-order harmonics q(ψ_(s))=1 energetic particle modes(EPMs)have been observed in toroidal plasmas experiments with neutral beam injection.To investigate these phenomena,linear properties and nonlinear dynamics of ...High-order harmonics q(ψ_(s))=1 energetic particle modes(EPMs)have been observed in toroidal plasmas experiments with neutral beam injection.To investigate these phenomena,linear properties and nonlinear dynamics of these EPMs driven by passing energetic particles(EPs)are studied via the global hybrid kinetic-magnetohydrodynamic code M3D-K.Simulation results demonstrate that passing EPs'effects on high mode-number harmonics(q(ψ_(s))=m/n=2/2,3/3,4/4)instability are more obvious than the q(ψ_(s))=1/1 mode,especially when q-profile is sufficiently flat in the core region.Furthermore,the effects of the pitch angleΛ_0 and beam ion pressure P_(hot)/P_(total)on the features of high n components are also analyzed specifically.It is found that there exists only one resonant condition for these EPMs.In the nonlinear phase,these high mode-number harmonics can induce significant energetic ions redistribution and chirping up phenomena,which differs from the classical fishbone excited by passing EPs.These discoveries are conducive to better apprehend the underlying physical mechanisms of the highorder harmonics driven by passing EPs.展开更多
Both current and pressure coupling schemes have been adopted in the hybrid kinetic–magnetohydrodynamic code CLT-K recently.Numerical equivalences between these two coupling schemes are strictly verified under differe...Both current and pressure coupling schemes have been adopted in the hybrid kinetic–magnetohydrodynamic code CLT-K recently.Numerical equivalences between these two coupling schemes are strictly verified under different approximations.First,when considering only the perturbed distribution function of energetic particles(EPs),the equivalence can be proved analytically.Second,when both the variations of the magnetic field and the EP distribution function are included,the current and pressure coupling schemes numerically produce the same result in the nonlinear simulations.On this basis,the influences of co-/counter-passing and trapped EPs on the linear stabilities of the m/n=2/1 tearing mode(TM)have been investigated(where m and n represent the poloidal and toroidal mode numbers,respectively).The results of scanningβh of EPs show that the co-passing and trapped EPs are found to stabilize the TM,while the counter-passing EPs tend to destabilize the TM.The behind(de)stabilization mechanisms of the TM by EPs are carefully analyzed.Furthermore,after exceeding critical EP betas,the same branch of the high-frequency mode is excited by co-/counterpassing and trapped EPs,which is identified as the m/n=2/1 energetic particle mode.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.40704026 and 41374167)
文摘The pitch-angle distribution of energetic particles is important for space physics studies on magnetic storm and particle acceleration.A‘pin-hole’imaging structure is built with the‘pin-hole’technique and a position sensitive detector,which can be used to measure the pitch angle distribution of energetic particles.To calibrate the angular response of the‘pin-hole’imaging structure,special experiment facilities are needed,such as the particle accelerator with special design.The features of this kind of particle accelerator are:1)The energy range of the outgoing particles should be mid-energy particles(tens keV to several hundred keV);2)the particle flux should be consistent in time-scale;3)the directions of the outgoing particles should be the same and 4)the particle number within the spot should be low enough.In this paper,a method to calibrate the angular response of the‘pin-hole’imaging structure by the90Sr/90Y β source with a collimator is introduced and simulated by Geant4 software.The result of the calibration with the collimated β source is in accord with the Geant4 simulations,which verifies the validity of this method.
基金supported by the National Natural Science Foundation of China(Grant No.41421003)Major Project of Chinese National Programs for Fundamental Research and Development(Grant No.2012CB825603)
文摘In cases where substorm injections can be observed simultaneously by multiple spacecraft,they can help elucidate the potential mechanisms of particle transport and energization,of great importance to understanding and modeling the magnetosphere.In this paper,using data returned from the BeiDa-IES(BD-IES) instrument onboard a satellite in an inclined(55°) geosynchronous orbit(IGSO),in combination with two geo-transfer orbiting(GTO) satellite Van Allen Probes(A and B),we analyze a substorm injection event that occurred on the 16 th of October 2015.During this substorm injection,the IGSO onboard BD-IES was outbound,while both Van Allen Probe satellites(A and B) were inbound,a configuration of multiple trajectories that provides a unique opportunity to simultaneously investigate both the inward and outward radial propagation of substorm injection.Indicated by AE/AL indices,this substorm was closely related to an IMF/solar wind discontinuity that showed a sharp change in IMF Bz direction to the north.The innermost signature of this substorm injection was detected by Van Allen Probes A and B at L-3.7,while the outermost signature was observed by the onboard BD-IES instrument at L-10.These data indicate that the substorm had a global,rather than just local,effect.Finally,we suggest that electric fields carried by fast-mode compressional waves around the substorm injection are the most likely candidate mechanism for the electron injection signatures observed in the inner- and outermost inner magnetosphere.
基金supported by the National Natural Science Foundation of China(Grant Nos.41374166,41374167,41074117 and 41421003)Major Project of Chinese National Programs for Fundamental Research and Development(Grant No.2012CB825603)
文摘The measurement of energetic particles plays an important role in the space environment monitoring and space weather forecasting.The accuracy of the energetic electron measurement is seriously influenced by the proton contamination.An anti-proton contamination design for the sensor of imaging energetic electron spectrometer is introduced in this paper.According to the electron and proton spectrum on the typical satellite orbits calculated by the radiation belt models,the efficiency of the anti-proton contamination design is estimated by the Geant4 simulation and the design is optimized based on the simulation results.
文摘Based on the knowledge and related theory of earth’s radiation belt, the data of energetic particles observed by detectors onboard ‘CBERS-1’ satellite at a solar syn- chronous orbit were analyzed. It is proved that the observational results are in agreement with the theoretical description of the radiation belt structures. Analysis of more than 3 years’ data showed clearly that under quiet solar conditions, at a height of about 800 km the energetic particles were mainly located in three regions: northern auroral belt (40°― 80°), southern auroral belt (?40°― ?80°) and South Atlantic Geomagnetic Anomaly Re- gion (SAA). Actually, this is for the global distribution, at each longitude the latitudinal coverage is much narrower and particles are along the geomagnetic latitude of about ±60°. The species of particles in different regions and their counting rates are different. In SAA, usually both electrons and protons are observed, which should come from inner radiation belt; in polar regions only energetic electrons are observed under the quiet condition, which belongs to the outer radiation belt. The distribution of outer radiation electrons is asymmetrical for longitudes as well as northern and southern polar regions. These asymmetries can be explained with the reflecting altitudes of the mirror points of charged particles at the same L shell.
基金supported by National Natural Science Foundation of China (Nos. 12205251, 12275236 and 12261131622)Italian Ministry for Foreign Affairs and International Cooperation Project (No. CN23GR02)+2 种基金the National Key Research and Development Program of China (Nos. 2019YFE03020003 and 2017YFE0301900)Users of Excellence program of Hefei Science Center CAS (No. 2021HSC-UE016)funded by the European Union via the Euratom Research and Training Programme (No. 101052200–EUROfusion)
文摘In a tokamak fusion reactor operated at steady state,the equilibrium magnetic field is likely to have reversed shear in the core region,as the noninductive bootstrap current profile generally peaks off-axis.The reversed shear Alfvén eigenmode(RSAE)as a unique branch of the shear Alfvén wave in this equilibrium,can exist with a broad spectrum in wavenumber and frequency,and be resonantly driven unstable by energetic particles(EP).After briefly discussing the RSAE linear properties in burning plasma condition,we review several key topics of the nonlinear dynamics for the RSAE through both wave-EP resonance and wave-wave coupling channels,and illustrate their potentially important role in reactor-scale fusion plasmas.By means of simplified hybrid MHD-kinetic simulations,the RSAEs are shown to have typically broad phase space resonance structure with both circulating and trapped EP,as results of weak/vanishing magnetic shear and relatively low frequency.Through the route of wave-EP nonlinearity,the dominant saturation mechanism is mainly due to the transported resonant EP radially decoupling with the localized RSAE mode structure,and the resultant EP transport generally has a convective feature.The saturated RSAEs also undergo various nonlinear couplings with other collective oscillations.Two typical routes as parametric decay and modulational instability are studied using nonlinear gyrokinetic theory,and applied to the scenario of spontaneous excitation by a finite amplitude pump RSAE.Multiple RSAEs could naturally couple and induce the spectral energy cascade into a low frequency Alfvénic mode,which may effectively transfer the EP energy to fuel ions via collisionless Landau damping.Moreover,zero frequency zonal field structure could be spontaneously excited by modulation of the pump RSAE envelope,and may also lead to saturation of the pump RSAE by both scattering into stable domain and local distortion of the continuum structure.
基金supported by the National Natural Science Foundation of China(Grant No.41204119)
文摘Cross-calibration of high energetic particle data is a primary requirement for the availability of multi-instrument, multi-spacecraft data. II also can provide a method to verify relative reliability of data from single satellite measurement. This pa- per presents a case study of energetic particles data cross-calibration between FY-3B and NOAA-17. A generally good agree- ment is acquired in the flux values and distribution trend of 2.5-6.9 MeV protons and 0.3-1.1 MeV electrons between FY-3B and NOAA-17 satellites. It suggests that the data observed by FY-3B is properly cross-calibrated. We can also confirm that energetic particles data observed by FY-3B satellite is available.
基金supported by National Key R&D Program of China(Nos.2019YFE03050002,2018YFE0310400,and 2022YFE03040002)National Natural Science Foundation of China(Nos.12005003 and 11975270)Science Foundation of Institute of Plasma Physics,Chinese Academy of Sciences(No.DSJJ-2022-04)。
文摘High-order harmonics q(ψ_(s))=1 energetic particle modes(EPMs)have been observed in toroidal plasmas experiments with neutral beam injection.To investigate these phenomena,linear properties and nonlinear dynamics of these EPMs driven by passing energetic particles(EPs)are studied via the global hybrid kinetic-magnetohydrodynamic code M3D-K.Simulation results demonstrate that passing EPs'effects on high mode-number harmonics(q(ψ_(s))=m/n=2/2,3/3,4/4)instability are more obvious than the q(ψ_(s))=1/1 mode,especially when q-profile is sufficiently flat in the core region.Furthermore,the effects of the pitch angleΛ_0 and beam ion pressure P_(hot)/P_(total)on the features of high n components are also analyzed specifically.It is found that there exists only one resonant condition for these EPMs.In the nonlinear phase,these high mode-number harmonics can induce significant energetic ions redistribution and chirping up phenomena,which differs from the classical fishbone excited by passing EPs.These discoveries are conducive to better apprehend the underlying physical mechanisms of the highorder harmonics driven by passing EPs.
基金supported by National Natural Science Foundation of China(No.11835010)by the National Key Research and Development Program of China(Nos.2019YFE03030004 and 2022YFE031000001)。
文摘Both current and pressure coupling schemes have been adopted in the hybrid kinetic–magnetohydrodynamic code CLT-K recently.Numerical equivalences between these two coupling schemes are strictly verified under different approximations.First,when considering only the perturbed distribution function of energetic particles(EPs),the equivalence can be proved analytically.Second,when both the variations of the magnetic field and the EP distribution function are included,the current and pressure coupling schemes numerically produce the same result in the nonlinear simulations.On this basis,the influences of co-/counter-passing and trapped EPs on the linear stabilities of the m/n=2/1 tearing mode(TM)have been investigated(where m and n represent the poloidal and toroidal mode numbers,respectively).The results of scanningβh of EPs show that the co-passing and trapped EPs are found to stabilize the TM,while the counter-passing EPs tend to destabilize the TM.The behind(de)stabilization mechanisms of the TM by EPs are carefully analyzed.Furthermore,after exceeding critical EP betas,the same branch of the high-frequency mode is excited by co-/counterpassing and trapped EPs,which is identified as the m/n=2/1 energetic particle mode.