Shot-integrated measurement of the triton burnup ratio has been performed in the Large Helical Device. It was reported that the triton burnup ratio, defined as total DT neutron yield divided by total DD neutron yield,...Shot-integrated measurement of the triton burnup ratio has been performed in the Large Helical Device. It was reported that the triton burnup ratio, defined as total DT neutron yield divided by total DD neutron yield, increases significantly in inward shifted configurations. To understand the magnetic configuration dependence of the triton burnup ratio, the first orbit loss fraction of 1 MeV tritons is evaluated by means of the Lorentz orbit code for various magnetic configurations. The first orbit loss of 1 MeV tritons is seen at t of less than 10-5 s and loss points of the triton are concentrated on the side of the helical coil case where the magnetic field is relatively weak. The significant decrease of the first orbit loss fraction by 15% is obtained with the inward shift of the magnetic axis position from 3.90 to 3.55 m. It is found that the decrease of first orbit loss is due to the reduction of the first orbit loss of transition and helically trapped tritons.展开更多
A corrective factor (E,ρ)≤1) dependent on ion energy and mass density of material for energy loss has been introduced into Bethe-Bloch formula, so that the energy deposition process of fast ion penetrating through t...A corrective factor (E,ρ)≤1) dependent on ion energy and mass density of material for energy loss has been introduced into Bethe-Bloch formula, so that the energy deposition process of fast ion penetrating through the allotropic solid films are well discussed with the two-component assumption. An analysis expression of electronic stopping power for different phase structures has been derived from the contribution of "valence" and "core" electrons. The two thirds of inelastic scattering arisen from valence electron was revealed by comparing the theoretical calculation and experimental results on both random and oriented lattice site. The corrective factor representative to the role of inner electrons increases with the projectile energy but decreases with mass density of solids.展开更多
The performance of an energetic compound is mainly decided by parameters such as density, oxygen balance, heat of formation,and stability. Among these properties, density is the most important factor because it determ...The performance of an energetic compound is mainly decided by parameters such as density, oxygen balance, heat of formation,and stability. Among these properties, density is the most important factor because it determines the detonation pressure and velocity. One of the trends in the development of high-energy-density materials(HEDMs) involves the study of energetic materials with high nitrogen levels. A compound with high nitrogen content can obtain substantial energy from the heat of formation rather than from the intramolecular oxidation of carbon skeleton to release energy in the form of a nitro group or nitrate ester. In addition to excellent performance, the newly developed energetic materials should also possess high working power and insensitivity toward external influences for ensuring the safety of charge and service, high energy release rate, long service life,good compatibility, excellent biological performance, low toxicity, safe battlefield environment, and low moisture absorption,which meet the requirements of military and civilian use. This review summarizes the research progress on global HEDMs.TNAZ, FOX-7, octanitrocubanane, TAM, TKX-50, and N5 were believed to show promise in achieving application goals. The prospective vision of HEDMs containing ions, total nitrogen, metal hydrogen, and nuclear energetic isomers, overcoming technical barriers, synthesis of all-nitrogen materials, theoretical studies on desorption/adsorption system, and challenging technical problems that need to be solved for the safety of synthetic nitrogen compounds were discussed to further elucidate the effect of this subject.展开更多
以甲氧基甲酰肼与叠氮氰为原料,经成环、硝解、酸化、中和等反应合成高能材料1,5-二硝胺基四唑(DNAT)及其含能离子盐——钾盐(DKDNAT)、铵盐(DADNAT)、肼盐(DHDNAT)、羟胺盐(DHADNAT),采用红外光谱、1 H NMR、13 C NMR及元素分析对DNAT...以甲氧基甲酰肼与叠氮氰为原料,经成环、硝解、酸化、中和等反应合成高能材料1,5-二硝胺基四唑(DNAT)及其含能离子盐——钾盐(DKDNAT)、铵盐(DADNAT)、肼盐(DHDNAT)、羟胺盐(DHADNAT),采用红外光谱、1 H NMR、13 C NMR及元素分析对DNAT及其含能离子盐的结构进行了表征;优化了关键中间体1-甲氧基甲酰基-1,5-二氨基四唑(MCDAT)的合成工艺;探讨了一锅法合成MCDAT的反应机理;采用DSC方法对DNAT及其钾盐、铵盐、肼盐和羟胺盐的热性能进行了分析;对DNAT-CMDB、DHDNAT-CMDB、DHADNATCMDB推进剂的能量特性进行了理论研究。结果表明,叠氮氰与甲氧基甲酰肼的最佳摩尔比为1.2∶1.0,反应温度为25℃,MCDAT的收率由文献中的37.3%提高到79.3%;DNAT及其4种含能离子盐(钾盐、铵盐、肼盐和羟胺盐)的热分解峰温依次为94.1、259.1、192.1、142.8、146.7°C;3种推进剂的理论比冲分别为2 539.1、2 489.9、2 532.6N·s/kg,特征速度为1 571.6、1 570.1、1 580.6m/s。展开更多
基金supported partly by LHD project budgets (ULHH003 and ULHH034)
文摘Shot-integrated measurement of the triton burnup ratio has been performed in the Large Helical Device. It was reported that the triton burnup ratio, defined as total DT neutron yield divided by total DD neutron yield, increases significantly in inward shifted configurations. To understand the magnetic configuration dependence of the triton burnup ratio, the first orbit loss fraction of 1 MeV tritons is evaluated by means of the Lorentz orbit code for various magnetic configurations. The first orbit loss of 1 MeV tritons is seen at t of less than 10-5 s and loss points of the triton are concentrated on the side of the helical coil case where the magnetic field is relatively weak. The significant decrease of the first orbit loss fraction by 15% is obtained with the inward shift of the magnetic axis position from 3.90 to 3.55 m. It is found that the decrease of first orbit loss is due to the reduction of the first orbit loss of transition and helically trapped tritons.
文摘A corrective factor (E,ρ)≤1) dependent on ion energy and mass density of material for energy loss has been introduced into Bethe-Bloch formula, so that the energy deposition process of fast ion penetrating through the allotropic solid films are well discussed with the two-component assumption. An analysis expression of electronic stopping power for different phase structures has been derived from the contribution of "valence" and "core" electrons. The two thirds of inelastic scattering arisen from valence electron was revealed by comparing the theoretical calculation and experimental results on both random and oriented lattice site. The corrective factor representative to the role of inner electrons increases with the projectile energy but decreases with mass density of solids.
文摘The performance of an energetic compound is mainly decided by parameters such as density, oxygen balance, heat of formation,and stability. Among these properties, density is the most important factor because it determines the detonation pressure and velocity. One of the trends in the development of high-energy-density materials(HEDMs) involves the study of energetic materials with high nitrogen levels. A compound with high nitrogen content can obtain substantial energy from the heat of formation rather than from the intramolecular oxidation of carbon skeleton to release energy in the form of a nitro group or nitrate ester. In addition to excellent performance, the newly developed energetic materials should also possess high working power and insensitivity toward external influences for ensuring the safety of charge and service, high energy release rate, long service life,good compatibility, excellent biological performance, low toxicity, safe battlefield environment, and low moisture absorption,which meet the requirements of military and civilian use. This review summarizes the research progress on global HEDMs.TNAZ, FOX-7, octanitrocubanane, TAM, TKX-50, and N5 were believed to show promise in achieving application goals. The prospective vision of HEDMs containing ions, total nitrogen, metal hydrogen, and nuclear energetic isomers, overcoming technical barriers, synthesis of all-nitrogen materials, theoretical studies on desorption/adsorption system, and challenging technical problems that need to be solved for the safety of synthetic nitrogen compounds were discussed to further elucidate the effect of this subject.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 40674083 and 40390153)National Key Laboratory Research Outlay Grant 40523006the Slovak Research and Development Agency under Contract No. APVV-51-053805.