This paper presents a numerical investigation of the potential aerodynamic benefits of using endwall contouring in a fairly aggressive duct with six struts based on the platform for endwall design optimization.The pla...This paper presents a numerical investigation of the potential aerodynamic benefits of using endwall contouring in a fairly aggressive duct with six struts based on the platform for endwall design optimization.The platform is constructed by integrating adaptive genetic algorithm(AGA), design of experiments(DOE), response surface methodology(RSM) based on the artificial neural network(ANN), and a 3D Navier–Stokes solver.The visual analysis method based on DOE is used to define the design space and analyze the impact of the design parameters on the target function(response).Optimization of the axisymmetric and the non-axisymmetric endwall contouring in an S-shaped duct is performed and evaluated to minimize the total pressure loss.The optimal ducts are found to reduce the hub corner separation and suppress the migration of the low momentum fluid.The non-axisymmetric endwall contouring is shown to remove the separation completely and reduce the net duct loss by 32.7%.展开更多
The secondary flow originated from the inherent pressure gradient inside the vane cascade has a strong impact on the endwall cooling performance as the crossflow sweeps the upstream coolant jet towards the suction sid...The secondary flow originated from the inherent pressure gradient inside the vane cascade has a strong impact on the endwall cooling performance as the crossflow sweeps the upstream coolant jet towards the suction side,resulting in intensifying thermal load near the pressure side endwall.Hence a novel ribbed-endwall is introduced to suppress passage crossflow.The effects of the mass flow ratio and the rib layout were examined using numerical simulations by solving the three-dimensional Reynolds-averaged Navier-Stokes(RANS)equations with the shear stress transport(SST)k-ωturbulence model.The results indicate that the ribs effectively prevent the coolant migrating from the pressure side to the suction side,helping the coolant jet to spread along the lateral orientation.Therefore,the endwall adiabatic film cooling effectiveness is substantially improved.The maximum cooling effectiveness is achieved for the case with three-ribs when the height of the rib equals one hole diameter among all cases.The area-averaged adiabatic cooling effectiveness is enhanced by 31.6%relative to the flat endwall when the mass flow ratio of coolant to mainstream equals to 0.52%.More importantly,the ribbed-endwall obtains a relatively lower level of aerodynamic loss owing to the reduced lateral migration inside the vane cascade.展开更多
The current paper presents experimental and computational results to assess the effectiveness of non-axisymmetric endwall contouring in a compressor linear cascade. The endwaU was designed by an endwall design optimi-...The current paper presents experimental and computational results to assess the effectiveness of non-axisymmetric endwall contouring in a compressor linear cascade. The endwaU was designed by an endwall design optimi- zation platform at 0° incidence (design condition). The optimization method is based on a genetic algorithm. The design objective was to minimize the total pressure losses. The experiments were carried out in a compressor cascade at a low-speed test facility with a Mach number of 0.15. Four nominal inlet flow angles were chosen to test the performance of non-axisymmetric Contoured Endwall (CEW). A five-hole pressure probe with a head diameter of 2 mm was used to traverse the downstream flow fields of the flat-endwall (FEW) and CEW cascades. Both the measured and predicted results indicated that the implementation of CEW results in smaller comer stall, and reduction of total pressure losses. The CEW gets 15.6% total pressure loss coefficient reduction at design condition, and 22.6% at off-design condition (+7° incidence). And the mechanism of the improvement of CEW based on both measured and calculated results is that the adverse pressure gradient (APG) has been reduced through the groove configuration near the leading edge (LE) of the suction surface (SS).展开更多
Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplish...Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplished by steady-state numerical hydrodynamics and deep knowledge of the field of flow.Because of the interaction between mainstream and purge flow contributing supplementary losses in the stage,non-axisymmetric endwalls are highly susceptible to the inception of purge flow exit compared to the flat and any advantage rapidly vanishes.The conclusions reveal that the supreme endwall pattern could yield a lowering of the gross pressure loss at the design stage and is related to the size of the top-loss location being productively lowered.This has led to diminished global thermal exchange lowered in the passage of the vane alone.The reverse flow adjacent to the suction side corner of the endwall is migrated farther from the vane surface,as the deviated pressure spread on the endwall accelerates the flow and progresses the reverse flow core still downstream.The depleted association between the tornado-like vortex and the corner vortex adjacent to the suction side corner of the endwall is the dominant mechanism of control in the contoured end wall.In this publication,we show that the non-axisymmetric endwall contouring by selective numerical shape change method at most prominent locations is advantageous in lowering the thermal load in turbines to augment the net heat flux reduction as well as the aerodynamic performance using multi-objective optimization.展开更多
An upstream coolant injection that is different from the known leakage flow was introduced to protect the turbine endwall.This coolant is ejected tangentially from a row of cylindrical holes situated at the side of a ...An upstream coolant injection that is different from the known leakage flow was introduced to protect the turbine endwall.This coolant is ejected tangentially from a row of cylindrical holes situated at the side of a backward-facing step.In this experiment,the effects of mass flow ratio and leakage slot width on the endwall heat transfer characteristics were investigated.The dimensionless heat transfer coefficient(Nu)and adiabatic film cooling effectiveness(η)on an axisymmetric turbine endwall were measured by the stable-state thermochromic liquid crystal(TLC)technique and the pressure sensitive paint(PSP)technique,respectively.Three mass flow ratios(MFR)of 0.64%,0.85%,and 1.07%,as well as two leakage slot widths(W)of 3.93 mm,and 7.86 mm were considered.Results indicate that the injection film suppresses the strength of the passage vortex,which leads to the coolant covering almost the entire endwall.This result is more evident for the higher MFR cases,meanwhile,the corresponding averaged film cooling effectiveness is increased with the enhancement of the MFR.However,the case with a higher MFR produces a higher heat transfer coefficient distribution,especially in the region close to the leakage slot edge.Besides,when the W is lower,the endwall presents a higherηand a lower Nu for all the cases,which can guide the optimal design of the endwall.展开更多
The mid-passage gap is an inevitable structure in a vane passage due to turbine vanes being manufactured individually.The coolant from this gap is able to prevent hot mainstream ingression and provide cooling protecti...The mid-passage gap is an inevitable structure in a vane passage due to turbine vanes being manufactured individually.The coolant from this gap is able to prevent hot mainstream ingression and provide cooling protection for the endwall.A novel idea of enlarging the endwall’s coverage area and reducing the endwall’s thermal load by applying the mid-passage gap with variable surface angles is carried out in this paper.The endwall’s aerothermal and film cooling performances under four mid-passage gap modes at three typical mass flow ratio conditions are numerically investigated.Results indicate that under the traditional mid-passage mode,the coolant flows into the mainstream with a perpendicular incidence angle and can’t stick to the endwall.Thus,cooling failure occurs,and the endwall’s thermal load is badly increased.The film cooling level at the suction-side endwall is improved when applying the mid-passage gap of a 45surface angle due to the secondary vortex being suppressed.In addition,when applying the mid-passage gap of a 135surface angle,the horseshoe vortex is pushed away,and the coverage area at the pressure-side endwall is enlarged significantly.The best film cooling performance is achieved when the upstream surface angle is 135and the downstream surface angle is 45due to the adiabatic film cooling effectiveness being increased at both the pressure-and suction-side endwall.When the mass flow ratio is 1.5%,the coverage area is enlarged by 43%,and the area-averaged adiabatic film cooling effectiveness is increased by 37%,when compared with those under the traditional mid-passage mode.展开更多
This study presents endwall hydrodynamics and heat transfer in a linear turbine cascade at Re 5×105 at low and high intensities of turbulence.Results are numerically predicted using the standard SST model and Re...This study presents endwall hydrodynamics and heat transfer in a linear turbine cascade at Re 5×105 at low and high intensities of turbulence.Results are numerically predicted using the standard SST model and Reθ-γtransition model as well as using the high-resolution LES separately.The major secondary flow components,comprising the horseshoe,corner,and passage vortices are recognized and the impact on heat or mass transfer is investigated.The complicated behavior of turbine passage secondary flow generation and establishment are impacted by the perspective of boundary layer attributes and inflow turbulence.The passage vortex concerning the latest big leading-edge vane is generated by the enlargement of the circulation developed at the first instance adjacent to the pressure side becomes powerful and mixes with other vortex systems during its migration towards the suction side.The study conclusions reveal that substantial enhancements are attained on the endwall surface,for the entire spanwise blade extension on the pressure surface,and in the highly 3-D region close to the endwall on the suction surface.The forecasted suction surface thermal exchange depicts great conformity with the measurement values and precisely reproduces the enhanced thermal exchange owing to the development and lateral distribution of the secondary flows along the midspan of the blade passage downstream.The impacts of the different secondary flow structures on the endwall thermal exchange are described in depth.展开更多
Non-Axisymmetric Endwall Profiling(NAEP) is commonly utilized in turbines to eliminate secondary flows.Nevertheless,most of the NAEP methods consider a single-blade row environment without incorporating the effect of ...Non-Axisymmetric Endwall Profiling(NAEP) is commonly utilized in turbines to eliminate secondary flows.Nevertheless,most of the NAEP methods consider a single-blade row environment without incorporating the effect of the stage environment.This paper aims to investigate the influence mechanism of the incoming vortex on the endwall secondary flow structures of NAEP in a highly loaded turbine cascade.To model the incoming vortex in a stage environment,this study considers a half-delta wing as the vortex generator at the upstream of the turbine cascade.The NAEP is then carried out for a highly loaded turbine cascade with an in-house numerical optimization design platform subject to no incoming vortex.Numerical simulation is also carried out under the influence of the incoming vortex for the turbine cascades with both planar and non-axisymmetric endwall.This paper furthers investigated the pitchwise effect of the incoming vortex on the near endwall secondary flow.The results indicate that the NAEP effectively improves the endwall secondary flow of the turbine cascade,where the total pressure loss coefficient and the secondary kinetic energy(SKE) are reduced by 7.3%,and 45.7%,respectively.It is further seen that with the incoming vortex,the NAEP achieves a considerable control effect on the endwall secondary flow of the turbine cascade.With incoming vortex,the NAEP can still achieve considerable control effect on the endwall secondary flow of the turbine cascade;the averaged reductions of loss coefficient and SKE are 7.8% and 14.2%,respectively.Under some pitchwise locations,incoming vortex can suppress the convection of cross-passage flow toward the suction corner greatly and reduce the loss coefficient of the baseline cascade.The incoming vortex at 4/7 pitch impinged right at the blade leading edge,leading to the generation of low-momentum fluid,which increased the size and the strength of the horseshoe vortex.Under all the pitchwise locations,NAEP can suppress the secondary vortices,e.g.,the passage vortex and the c展开更多
基金supported by the National Natural Science Foundation of China (Nos.51006005, 51236001)the National Basic Research Program of China (No.2012CB720201)the Fundamen tal Research Funds for the Central Universities of China
文摘This paper presents a numerical investigation of the potential aerodynamic benefits of using endwall contouring in a fairly aggressive duct with six struts based on the platform for endwall design optimization.The platform is constructed by integrating adaptive genetic algorithm(AGA), design of experiments(DOE), response surface methodology(RSM) based on the artificial neural network(ANN), and a 3D Navier–Stokes solver.The visual analysis method based on DOE is used to define the design space and analyze the impact of the design parameters on the target function(response).Optimization of the axisymmetric and the non-axisymmetric endwall contouring in an S-shaped duct is performed and evaluated to minimize the total pressure loss.The optimal ducts are found to reduce the hub corner separation and suppress the migration of the low momentum fluid.The non-axisymmetric endwall contouring is shown to remove the separation completely and reduce the net duct loss by 32.7%.
基金the support of National Natural Science Foundation of China(No.52006178)National Key R&D Program of China(No.Y2019-Ⅷ-0007-0168)+3 种基金the Fundamental Research Funds for the Central Universitiesthe Innovation Capacity Support Plan in Shaanxi Province of China(Grant No.2023-CX-TD-19)the Swedish Research Council(VR)the Swedish National Energy Agency(EM).
文摘The secondary flow originated from the inherent pressure gradient inside the vane cascade has a strong impact on the endwall cooling performance as the crossflow sweeps the upstream coolant jet towards the suction side,resulting in intensifying thermal load near the pressure side endwall.Hence a novel ribbed-endwall is introduced to suppress passage crossflow.The effects of the mass flow ratio and the rib layout were examined using numerical simulations by solving the three-dimensional Reynolds-averaged Navier-Stokes(RANS)equations with the shear stress transport(SST)k-ωturbulence model.The results indicate that the ribs effectively prevent the coolant migrating from the pressure side to the suction side,helping the coolant jet to spread along the lateral orientation.Therefore,the endwall adiabatic film cooling effectiveness is substantially improved.The maximum cooling effectiveness is achieved for the case with three-ribs when the height of the rib equals one hole diameter among all cases.The area-averaged adiabatic cooling effectiveness is enhanced by 31.6%relative to the flat endwall when the mass flow ratio of coolant to mainstream equals to 0.52%.More importantly,the ribbed-endwall obtains a relatively lower level of aerodynamic loss owing to the reduced lateral migration inside the vane cascade.
基金supported by National Natural Science Foundation of China(51236001)National Basic Research Program of China(2012CB720201)Beijing Natural Science Foundation(No.3151002)
文摘The current paper presents experimental and computational results to assess the effectiveness of non-axisymmetric endwall contouring in a compressor linear cascade. The endwaU was designed by an endwall design optimi- zation platform at 0° incidence (design condition). The optimization method is based on a genetic algorithm. The design objective was to minimize the total pressure losses. The experiments were carried out in a compressor cascade at a low-speed test facility with a Mach number of 0.15. Four nominal inlet flow angles were chosen to test the performance of non-axisymmetric Contoured Endwall (CEW). A five-hole pressure probe with a head diameter of 2 mm was used to traverse the downstream flow fields of the flat-endwall (FEW) and CEW cascades. Both the measured and predicted results indicated that the implementation of CEW results in smaller comer stall, and reduction of total pressure losses. The CEW gets 15.6% total pressure loss coefficient reduction at design condition, and 22.6% at off-design condition (+7° incidence). And the mechanism of the improvement of CEW based on both measured and calculated results is that the adverse pressure gradient (APG) has been reduced through the groove configuration near the leading edge (LE) of the suction surface (SS).
文摘Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplished by steady-state numerical hydrodynamics and deep knowledge of the field of flow.Because of the interaction between mainstream and purge flow contributing supplementary losses in the stage,non-axisymmetric endwalls are highly susceptible to the inception of purge flow exit compared to the flat and any advantage rapidly vanishes.The conclusions reveal that the supreme endwall pattern could yield a lowering of the gross pressure loss at the design stage and is related to the size of the top-loss location being productively lowered.This has led to diminished global thermal exchange lowered in the passage of the vane alone.The reverse flow adjacent to the suction side corner of the endwall is migrated farther from the vane surface,as the deviated pressure spread on the endwall accelerates the flow and progresses the reverse flow core still downstream.The depleted association between the tornado-like vortex and the corner vortex adjacent to the suction side corner of the endwall is the dominant mechanism of control in the contoured end wall.In this publication,we show that the non-axisymmetric endwall contouring by selective numerical shape change method at most prominent locations is advantageous in lowering the thermal load in turbines to augment the net heat flux reduction as well as the aerodynamic performance using multi-objective optimization.
基金the financial support from the National Natural Science Foundation of China(Grant No.U2241268)the National Science and Technology Major Project(Grant No.J2019-Ⅲ-0019-0063)。
文摘An upstream coolant injection that is different from the known leakage flow was introduced to protect the turbine endwall.This coolant is ejected tangentially from a row of cylindrical holes situated at the side of a backward-facing step.In this experiment,the effects of mass flow ratio and leakage slot width on the endwall heat transfer characteristics were investigated.The dimensionless heat transfer coefficient(Nu)and adiabatic film cooling effectiveness(η)on an axisymmetric turbine endwall were measured by the stable-state thermochromic liquid crystal(TLC)technique and the pressure sensitive paint(PSP)technique,respectively.Three mass flow ratios(MFR)of 0.64%,0.85%,and 1.07%,as well as two leakage slot widths(W)of 3.93 mm,and 7.86 mm were considered.Results indicate that the injection film suppresses the strength of the passage vortex,which leads to the coolant covering almost the entire endwall.This result is more evident for the higher MFR cases,meanwhile,the corresponding averaged film cooling effectiveness is increased with the enhancement of the MFR.However,the case with a higher MFR produces a higher heat transfer coefficient distribution,especially in the region close to the leakage slot edge.Besides,when the W is lower,the endwall presents a higherηand a lower Nu for all the cases,which can guide the optimal design of the endwall.
基金supported by the National Science and Technology Major Project,China(No.J2019-II-0011-0031)the National Natural Science Foundation of China(No.51936008).
文摘The mid-passage gap is an inevitable structure in a vane passage due to turbine vanes being manufactured individually.The coolant from this gap is able to prevent hot mainstream ingression and provide cooling protection for the endwall.A novel idea of enlarging the endwall’s coverage area and reducing the endwall’s thermal load by applying the mid-passage gap with variable surface angles is carried out in this paper.The endwall’s aerothermal and film cooling performances under four mid-passage gap modes at three typical mass flow ratio conditions are numerically investigated.Results indicate that under the traditional mid-passage mode,the coolant flows into the mainstream with a perpendicular incidence angle and can’t stick to the endwall.Thus,cooling failure occurs,and the endwall’s thermal load is badly increased.The film cooling level at the suction-side endwall is improved when applying the mid-passage gap of a 45surface angle due to the secondary vortex being suppressed.In addition,when applying the mid-passage gap of a 135surface angle,the horseshoe vortex is pushed away,and the coverage area at the pressure-side endwall is enlarged significantly.The best film cooling performance is achieved when the upstream surface angle is 135and the downstream surface angle is 45due to the adiabatic film cooling effectiveness being increased at both the pressure-and suction-side endwall.When the mass flow ratio is 1.5%,the coverage area is enlarged by 43%,and the area-averaged adiabatic film cooling effectiveness is increased by 37%,when compared with those under the traditional mid-passage mode.
文摘This study presents endwall hydrodynamics and heat transfer in a linear turbine cascade at Re 5×105 at low and high intensities of turbulence.Results are numerically predicted using the standard SST model and Reθ-γtransition model as well as using the high-resolution LES separately.The major secondary flow components,comprising the horseshoe,corner,and passage vortices are recognized and the impact on heat or mass transfer is investigated.The complicated behavior of turbine passage secondary flow generation and establishment are impacted by the perspective of boundary layer attributes and inflow turbulence.The passage vortex concerning the latest big leading-edge vane is generated by the enlargement of the circulation developed at the first instance adjacent to the pressure side becomes powerful and mixes with other vortex systems during its migration towards the suction side.The study conclusions reveal that substantial enhancements are attained on the endwall surface,for the entire spanwise blade extension on the pressure surface,and in the highly 3-D region close to the endwall on the suction surface.The forecasted suction surface thermal exchange depicts great conformity with the measurement values and precisely reproduces the enhanced thermal exchange owing to the development and lateral distribution of the secondary flows along the midspan of the blade passage downstream.The impacts of the different secondary flow structures on the endwall thermal exchange are described in depth.
基金supported by National Science and Technology Major Project (J2019-Ⅱ-0011-0031)the foundation of National Key Laboratory of Science and Technology on Aerodynamic Design and Research (No. D5150230005)+1 种基金the Practice and Innovation Funds for Graduate Students of Northwestern Polytechnical University (No.PF2023091)National Natural Science Foundation of China (No.51806174)。
文摘Non-Axisymmetric Endwall Profiling(NAEP) is commonly utilized in turbines to eliminate secondary flows.Nevertheless,most of the NAEP methods consider a single-blade row environment without incorporating the effect of the stage environment.This paper aims to investigate the influence mechanism of the incoming vortex on the endwall secondary flow structures of NAEP in a highly loaded turbine cascade.To model the incoming vortex in a stage environment,this study considers a half-delta wing as the vortex generator at the upstream of the turbine cascade.The NAEP is then carried out for a highly loaded turbine cascade with an in-house numerical optimization design platform subject to no incoming vortex.Numerical simulation is also carried out under the influence of the incoming vortex for the turbine cascades with both planar and non-axisymmetric endwall.This paper furthers investigated the pitchwise effect of the incoming vortex on the near endwall secondary flow.The results indicate that the NAEP effectively improves the endwall secondary flow of the turbine cascade,where the total pressure loss coefficient and the secondary kinetic energy(SKE) are reduced by 7.3%,and 45.7%,respectively.It is further seen that with the incoming vortex,the NAEP achieves a considerable control effect on the endwall secondary flow of the turbine cascade.With incoming vortex,the NAEP can still achieve considerable control effect on the endwall secondary flow of the turbine cascade;the averaged reductions of loss coefficient and SKE are 7.8% and 14.2%,respectively.Under some pitchwise locations,incoming vortex can suppress the convection of cross-passage flow toward the suction corner greatly and reduce the loss coefficient of the baseline cascade.The incoming vortex at 4/7 pitch impinged right at the blade leading edge,leading to the generation of low-momentum fluid,which increased the size and the strength of the horseshoe vortex.Under all the pitchwise locations,NAEP can suppress the secondary vortices,e.g.,the passage vortex and the c