期刊文献+
共找到62篇文章
< 1 2 4 >
每页显示 20 50 100
基于编码-解码卷积神经网络的遥感图像语义分割 被引量:51
1
作者 张哲晗 方薇 +3 位作者 杜丽丽 乔延利 张冬英 丁国绅 《光学学报》 EI CAS CSCD 北大核心 2020年第3期40-49,共10页
农村地区遥感图像语义分割是进行城乡规划、植被以及农用地检测的基础。农村地区高分辨率遥感图像含有较为复杂的地物信息,对其进行语义分割难度较大。基于此,提出一种改进的对称编码-解码网络结构SegProNet,利用池化索引与卷积融合语... 农村地区遥感图像语义分割是进行城乡规划、植被以及农用地检测的基础。农村地区高分辨率遥感图像含有较为复杂的地物信息,对其进行语义分割难度较大。基于此,提出一种改进的对称编码-解码网络结构SegProNet,利用池化索引与卷积融合语义信息及图像特征,通过1×1卷积构建Bottleneck层进一步提取细节、减少参数量,逐步加深过滤器深度以构建端到端的语义分割网络,改进激活函数进一步提升网络性能。实验结果表明,在CCF卫星数据集上,所提方法及经典语义分割网络U-Net、SegNet的准确率分别为98.4%,80.3%,98.1%,所提方法较其他方法更优。 展开更多
关键词 图像处理 农用地检测 遥感图像 语义分割 编码-解码网络 深度学习
原文传递
基于Encoder-Decoder网络的遥感影像道路提取方法 被引量:49
2
作者 贺浩 王仕成 +2 位作者 杨东方 王舒洋 刘星 《测绘学报》 EI CSCD 北大核心 2019年第3期330-338,共9页
针对道路目标特点,设计实现了用于遥感影像道路提取的Encoder-Decoder深度语义分割网络。首先,针对道路目标局部特征丰富、语义特征较为简单的特点,设计了较浅深度、分辨率较高的Encoder-Decoder网络结构,提高了分割网络的细节表示能力... 针对道路目标特点,设计实现了用于遥感影像道路提取的Encoder-Decoder深度语义分割网络。首先,针对道路目标局部特征丰富、语义特征较为简单的特点,设计了较浅深度、分辨率较高的Encoder-Decoder网络结构,提高了分割网络的细节表示能力。其次,针对遥感影像中道路目标所占像素比例较小的特点,改进了二分类交叉熵损失函数,解决了网络训练中正负样本严重失衡的问题。在大型道路提取数据集上的试验表明,所提方法召回率、精度和F1-score指标分别达到了83.9%、82.5%及82.9%,能够完整准确地提取遥感影像中的道路目标。所设计的Encoder-Decoder网络性能优良,且不需人工设计提取特征,因而具有良好的应用前景。 展开更多
关键词 遥感 道路提取 深度学习 语义分割 编解码网路
下载PDF
基于条件生成对抗网络的手绘图像检索 被引量:12
3
作者 刘玉杰 窦长红 +2 位作者 赵其鲁 李宗民 李华 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2017年第12期2336-2342,共7页
传统的手绘图像检索方法将自然图像通过边缘检测算法转换成"类手绘图",不能很好地减小自然图像与手绘图像之间的视觉差异.针对此问题,提出一种基于条件生成对抗网络的手绘图像检索方法.首先训练条件生成对抗网络,其中生成器... 传统的手绘图像检索方法将自然图像通过边缘检测算法转换成"类手绘图",不能很好地减小自然图像与手绘图像之间的视觉差异.针对此问题,提出一种基于条件生成对抗网络的手绘图像检索方法.首先训练条件生成对抗网络,其中生成器由边缘图至自然图像的映射网络构成;然后通过生成器将手绘图转换为自然图像,以消除二者的视觉差异;最后使用深度卷积神经网络提取深度特征进行相似度度量,达到检索的目的.在基准数据库上进行实验的结果显示,该方法的检索精度有明显提高. 展开更多
关键词 手绘图像检索 条件生成对抗网络 编码-解码网络 卷积神经网络
下载PDF
融合高阶信息的遥感影像建筑物自动提取 被引量:11
4
作者 王舒洋 慕晓冬 +2 位作者 杨东方 贺浩 郑玉航 《光学精密工程》 EI CAS CSCD 北大核心 2019年第11期2474-2483,共10页
针对遥感影像中建筑物目标与背景环境区分度低而造成的提取效果较差的问题,本文提出了融合高阶信息的编解码网络方法以改善建筑物自动提取的精度。首先,针对遥感影像建筑提取任务,使用深度编解码网络完成对建筑物目标的低阶语义特征提取... 针对遥感影像中建筑物目标与背景环境区分度低而造成的提取效果较差的问题,本文提出了融合高阶信息的编解码网络方法以改善建筑物自动提取的精度。首先,针对遥感影像建筑提取任务,使用深度编解码网络完成对建筑物目标的低阶语义特征提取;其次,使用多项式核完成对深度网络中间特征图的高阶描述,以提升网络对于模糊特征的辨识能力;最后,将低阶特征与高阶特征级联后,送入编解码网络的末端,得到对建筑物的分割结果。在Massachusetts Buildings数据集上进行试验,其召回率、准确率和F1-score指标分别达到了85.1%,77.5%和80.9%,综合指标F1-score相比于基础深度编解码网络提升约4%。本文所提方法改进了编解码器网络对于遥感影像建筑物自动提取任务的表现性能,能够更加精确地提取与背景区分度较低的建筑物目标,具有良好的实用价值。 展开更多
关键词 遥感 建筑物提取 高阶信息 编解码器网络 语义分割
下载PDF
数据增广的编解码卷积网络地震层间多次波压制方法 被引量:9
5
作者 刘小舟 胡天跃 +3 位作者 刘韬 魏哲枫 谢飞 安圣培 《石油地球物理勘探》 EI CSCD 北大核心 2022年第4期757-767,I0001,共12页
层间多次波压制是地震资料去噪领域的一项前沿技术挑战,对获取高质量数据、了解地下真实构造具有十分重要的意义。现有的层间多次波压制方法耗时长,对人工参数调整要求高,处理低信噪比数据时可能导致层间多次波泄露。为此,提出一种基于... 层间多次波压制是地震资料去噪领域的一项前沿技术挑战,对获取高质量数据、了解地下真实构造具有十分重要的意义。现有的层间多次波压制方法耗时长,对人工参数调整要求高,处理低信噪比数据时可能导致层间多次波泄露。为此,提出一种基于数据增广的编解码卷积神经网络层间多次波压制方法。首先,利用基于虚同相轴的层间多次波压制方法从原始数据中估计出一次波和层间多次波,生成一次波标签数据。然后,构建两种增广训练集:一方面,通过改变训练样本中层间多次波的振幅、极性及旅行时,进行层间多次波波场数据的增广,提高层间多次波压制网络的泛化能力;另一方面,通过对原始数据添加不同信噪比的高斯噪声进行噪声注入的数据增广,提高网络的抗噪性能。最后,结合去噪卷积神经网络(DnCNN)和U形全卷积神经网络(U-Net)的优势搭建了适合层间多次波压制的深层编、解码网络,进行神经网络训练和预测。合成数据和实际数据的处理结果表明,该方法能够有效压制地震层间多次波并保护一次波,具有较强的泛化能力和抗噪性能,可显著提高计算效率。 展开更多
关键词 层间多次波压制 虚同相轴 卷积神经网络 编解码网络 数据增广
下载PDF
基于改进SegNet的沥青路面病害提取与分类方法 被引量:7
6
作者 张志华 邓砚学 张新秀 《交通信息与安全》 CSCD 北大核心 2022年第3期127-135,共9页
针对现有SegNet算法难以精确区分裂缝和灌封裂缝等具有相似特征的沥青路面病害的问题,提出了基于改进SegNet网络的沥青路面病害提取方法。针对道路标线和光照不均匀等导致路面病害图像质量差异化的因素,本研究在去除道路标线的基础上,... 针对现有SegNet算法难以精确区分裂缝和灌封裂缝等具有相似特征的沥青路面病害的问题,提出了基于改进SegNet网络的沥青路面病害提取方法。针对道路标线和光照不均匀等导致路面病害图像质量差异化的因素,本研究在去除道路标线的基础上,运用带色彩恢复的多尺度视网膜增强算法,降低道路标线和光照对图像质量的影响以及增强路面病害图像的对比度、色调和亮度,提高病害的识别精度;为了充分利用图像的上下文信息,解决SegNet网络对细微病害分割效果不佳的问题,引入残差神经网络(ResNet)作为编码器,并对解码器中每个上采样产生的特征图拼接2个分别由卷积层(1×1的卷积核)和空洞卷积层从对应的编码器中获取的尺度相同的特征图;运用形态学闭运算连接分割结果中不连续的裂缝。为了验证改进算法的有效性,将其与典型的语义分割方法(SegNet和BiSeNet)在测试集上进行测试和性能对比。研究结果表明,3种方法的平均交并比(MIoU)和F1分数(F1-score)分别为(82.4%,98.9%),(69.4%,94.0%),(80.5%,98.1%);利用这3种方法对甘肃省部分路段路面病害的提取效果进行对比测试,提出方法的裂缝漏检率和误检率分别为2.91%,1.94%,优于SegNet(10.68%,14.56%)和BiSeNet(6.80%,12.62%)。本研究所提方法能够更精确地提取和区分沥青路面裂缝和灌封裂缝。 展开更多
关键词 智能交通 裂缝和灌封裂缝 编解码网络 空洞卷积 语义分割
下载PDF
一种新的沥青路面灌封裂缝自动提取方法 被引量:7
7
作者 邓砚学 张志华 张新秀 《科学技术与工程》 北大核心 2022年第16期6687-6694,共8页
为了提高基于图像处理的沥青路面病害识别效率和精度,引入图像增强处理中的多尺度视网膜(multi-scale Retinex,MSR)算法以减弱光照不均匀、道路场景多变等因素对路面病害图像质量的影响。针对SegNet网络难以精确分割沥青路面微小病害的... 为了提高基于图像处理的沥青路面病害识别效率和精度,引入图像增强处理中的多尺度视网膜(multi-scale Retinex,MSR)算法以减弱光照不均匀、道路场景多变等因素对路面病害图像质量的影响。针对SegNet网络难以精确分割沥青路面微小病害的问题,采用比视觉几何群网络(visual geometry group network,VGG)效果更好的残差网络(residual network,ResNet)作为主干网络,同时加入空洞卷积(dilation convolution)层,提高网络对细小病害的识别性能;针对改进网络在识别病害时误检率较高的问题,运用阈值法剔除分割结果中的假阳性。为了验证改进算法的有效性,将其与具有代表性的语义分割方法(如SegNet、BiSeNet)在相同数据集上进行对比,三者的平均交并比(mean intersection over union,MIoU)分别为0.7763、0.6743、0.6971,三者的F_(1)分数(F_(1)-score,F_(1))分别为0.8999、0.8743、0.8990。运用所提方法对甘肃省部分路段的路面灌封裂缝进行识别,结果与人工检测相比,漏检率为0.09%,误检率为2.49%。实验结果表明:所提方法能够更精确地提取沥青路面灌封裂缝。 展开更多
关键词 图像语义分割 阈值分割 沥青路面灌封裂缝 编解码网络 空洞卷积
下载PDF
基于注意力增强型编解码网络的化工过程故障诊断 被引量:1
8
作者 夏起磊 罗林 张垚 《辽宁石油化工大学学报》 CAS 2024年第2期63-70,共8页
化工过程的数据往往含有动态时序特性,传统故障检测对动态信息的使用率较低,限制了故障诊断性能。针对这个问题,提出了一种基于注意力增强的编解码网络模型的化工过程故障诊断新方法。编码部分利用LSTM提取过程数据的特征信息,结合注意... 化工过程的数据往往含有动态时序特性,传统故障检测对动态信息的使用率较低,限制了故障诊断性能。针对这个问题,提出了一种基于注意力增强的编解码网络模型的化工过程故障诊断新方法。编码部分利用LSTM提取过程数据的特征信息,结合注意力机制,更加有效地利用过程数据间的动态信息;解码部分利用LSTM并结合注意力机制提供的上下文向量,为归一化指数的回归提供更加精准的状态信息,最后利用归一化指数回归得到各个样本数据的故障类别概率值。结果表明,注意力机制的引入,提高了模型在时域下对过程动态信息的使用效率。针对本文提出的方法,利用田纳西伊士曼过程数据进行了实验,并与标准的PCA-SVM、DBN和ResNet的结果进行了对比。结果表明,该方法诊断故障的效果更加理想。 展开更多
关键词 故障诊断 长短期记忆网络 注意力机制 归一化指数回归 编解码网络
下载PDF
局部全局特征耦合与交叉尺度注意的医学图像融合 被引量:2
9
作者 张炯 王丽芳 +3 位作者 蔺素珍 秦品乐 米嘉 刘阳 《计算机工程》 CAS CSCD 北大核心 2023年第3期238-247,共10页
现有基于深度学习的多模态医学图像融合方法存在全局特征表示能力不足的问题。对此,提出一种基于局部全局特征耦合与交叉尺度注意的医学图像融合方法。该方法由编码器、融合规则和解码器三部分组成。编码器中采用并行的卷积神经网络(CNN... 现有基于深度学习的多模态医学图像融合方法存在全局特征表示能力不足的问题。对此,提出一种基于局部全局特征耦合与交叉尺度注意的医学图像融合方法。该方法由编码器、融合规则和解码器三部分组成。编码器中采用并行的卷积神经网络(CNN)和Transformer双分支网络分别提取图像的局部特征与全局表示。在不同尺度下,通过特征耦合模块将CNN分支的局部特征嵌入Transformer分支的全局特征表示中,最大程度地结合互补特征,同时引入交叉尺度注意模块实现对多尺度特征表示的有效利用。编码器提取待融合原始图像的局部、全局以及多尺度特征表示,根据融合规则融合不同源图像的特征表示后再输入到解码器中生成融合图像。实验结果表明,与CBF、PAPCNN、IFCNN、DenseFuse和U2Fusion方法相比,该方法在特征互信息、空间频率、边缘信息传递因子、结构相似度、感知图像融合质量这5个评价指标上分别平均提高6.29%、3.58%、29.01%、5.34%、5.77%,融合图像保留了更清晰的纹理细节和更高的对比度,便于疾病的诊断与治疗。 展开更多
关键词 医学图像融合 编码器-解码器网络 Transformer网络 特征耦合 交叉尺度注意
下载PDF
集成全尺度融合和循环注意力的医学图像分割网络
10
作者 单昕昕 李凯 文颖 《计算机科学》 CSCD 北大核心 2024年第5期100-107,共8页
深度学习中的编解码网络在图像特征提取和分层特征融合方面具有卓越的性能,常被用于医学图像分割。但是,目前主流的编解码网络分割方法仍面临编码和解码阶段单一网络挖掘的图像特征信息不足,以及仅使用简单的跳跃连接而无法充分利用全... 深度学习中的编解码网络在图像特征提取和分层特征融合方面具有卓越的性能,常被用于医学图像分割。但是,目前主流的编解码网络分割方法仍面临编码和解码阶段单一网络挖掘的图像特征信息不足,以及仅使用简单的跳跃连接而无法充分利用全尺度特征包含的粗粒度信息和细粒度信息等问题。为了解决上述问题,提出了一种集成全尺度融合和循环注意力的医学图像分割网络。首先,在U-Net编码器中加入了结合多层感知机(MLP)的卷积MLP模块来提取图像的全局特征信息,用于扩大编码器的特征感受野。其次,通过全尺度特征融合模块使得各尺度跳跃连接特征进行粗粒度信息和细粒度信息的有效融合,减小各尺度跳跃连接特征间的语义差异,突出图像的关键特征信息。最后,解码器通过提出的结合循环神经网络(RNN)和注意力机制的循环注意力解码模块(RADU)来逐级精细化图像特征信息,加强特征提取的同时避免信息冗余,并得到高精度分割结果。在4个数据集上将所提方法与主流较优的方法进行比较,所提方法在像素精度和骰子相似系数两个指标上的图像分割精度均有提高。因此,所提出的用于医学图像分割的编解码网络利用全尺度特征融合模块和循环注意力解码模块,能够获得较优异的高精度分割结果,并且模型具有良好的噪声鲁棒性和抗干扰能力。 展开更多
关键词 医学图像分割 编解码网络 多层感知机 全尺度特征融合 注意力机制 循环神经网络
下载PDF
基于改进残差网络的运动目标模糊图像复原方法
11
作者 孙灵 《现代电子技术》 北大核心 2024年第15期86-90,共5页
传统的残差网络在复原运动目标模糊图像时,在模糊程度较严重的情况下,存在特征提取不充分、噪声干扰等问题,导致恢复出的图像无法完全达到原始图像的清晰度和细节。对此,提出基于改进残差网络的运动目标模糊图像复原方法。对采集到的运... 传统的残差网络在复原运动目标模糊图像时,在模糊程度较严重的情况下,存在特征提取不充分、噪声干扰等问题,导致恢复出的图像无法完全达到原始图像的清晰度和细节。对此,提出基于改进残差网络的运动目标模糊图像复原方法。对采集到的运动目标模糊图像,采用多损失函数融合方法改进传统残差块结构,构建编码器-解码器网络训练结构,训练损失函数,提升网络的特征学习能力。通过完成训练的网络,输出运动目标模糊图像复原结果。实验结果表明,该方法复原运动目标模糊图像的峰值信噪比高于30 dB,结构相似性高于0.9。 展开更多
关键词 改进残差网络 运动目标 多损失函数融合 模糊图像 编辑器-解码器网络 复原方法
下载PDF
融合BERT语境词向量的译文质量估计方法研究 被引量:6
12
作者 李培芸 李茂西 +1 位作者 裘白莲 王明文 《中文信息学报》 CSCD 北大核心 2020年第3期56-63,共8页
蕴含语义、句法和上下文信息的语境词向量作为一种动态的预训练词向量,在自然语言处理的下游任务中有着广泛应用。然而,在机器译文质量估计中,没有相关研究工作涉及语境词向量。该文提出利用堆叠双向长短时记忆网络将BERT语境词向量引... 蕴含语义、句法和上下文信息的语境词向量作为一种动态的预训练词向量,在自然语言处理的下游任务中有着广泛应用。然而,在机器译文质量估计中,没有相关研究工作涉及语境词向量。该文提出利用堆叠双向长短时记忆网络将BERT语境词向量引入神经译文质量估计中,并通过网络并联的方式与传统的译文质量向量相融合。在CWMT18译文质量估计评测任务数据集上的实验结果表明,融合中上层的BERT语境词向量均显著提高了译文质量估计与人工评价的相关性,并且当对BERT语境词向量的最后4层表示平均池化后引入译文质量估计中对系统性能的提高幅度最大。实验分析进一步揭示了融合语境词向量的方法能利用译文的流利度特征来提高翻译质量估计的效果。 展开更多
关键词 神经译文质量估计 语境词向量 循环神经网络 编码器-解码器网络 质量向量
下载PDF
基于卷积神经网络的路面裂缝分割设计与研究
13
作者 刘艳宁 章国宝 《应用光学》 CAS 北大核心 2024年第2期373-384,共12页
裂缝是路面病害最主要的类型,准确的裂缝分割是国家进行公路预防养护管理的重要决策依据。针对背景复杂下现有模型路面裂缝分割准确度有待提高的问题,提出一种基于卷积神经网络的端到端裂缝分割模型,使用分层结构的ConvNeXt编码器提取... 裂缝是路面病害最主要的类型,准确的裂缝分割是国家进行公路预防养护管理的重要决策依据。针对背景复杂下现有模型路面裂缝分割准确度有待提高的问题,提出一种基于卷积神经网络的端到端裂缝分割模型,使用分层结构的ConvNeXt编码器提取多尺度特征,特征的最高层使用金字塔池化模块进一步获取全局先验特征,通过具有横向连接和自上而下的金字塔结构进行特征融合。针对裂缝和背景不平衡问题,使用平衡交叉熵损失函数提高模型的检测性能。此外,构建了一个包含2 876张裂缝图片的数据集UCrack,覆盖多种裂缝类型和广泛的背景范围,以提供丰富的特征供模型学习。实验表明,在UCrack测试数据集上模型的召回率和F1得分比其他表现最佳的模型提高了2.68%和6.89%;在CrackDataset数据集上的测试取得了85.68%的召回率和80.11%的F1得分,说明模型具有较好的泛化性能,可应对背景复杂的路面裂缝分割。 展开更多
关键词 裂缝分割 卷积神经网络 编解码网络 特征金字塔 金字塔池化
下载PDF
融合结构化卷积和双重注意力机制的轻量级眼底图像分割网络
14
作者 汪华登 刘金 +4 位作者 黎兵兵 潘细朋 刘振丙 蓝如师 罗笑南 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第5期760-774,共15页
眼底血管图像的自动分割对于多种眼科疾病的计算机辅助诊断具有重要作用.针对血管的尺度差异和图像噪声导致眼底血管图像分割困难、使用单一尺度卷积运算的深度学习方法获取的特征感受野有限,以及现有的方法复杂度过高的问题,提出一个... 眼底血管图像的自动分割对于多种眼科疾病的计算机辅助诊断具有重要作用.针对血管的尺度差异和图像噪声导致眼底血管图像分割困难、使用单一尺度卷积运算的深度学习方法获取的特征感受野有限,以及现有的方法复杂度过高的问题,提出一个融合结构化卷积和双重注意力机制的轻量级眼底图像分割网络.通过编码器增强、减少下采样次数和特征深度的编码-解码网络设计,实现参数量只有0.63M的轻量化网络.在编码阶段,提出一种结构化卷积方法,有效地避免了网络训练过拟合,提高了网络捕获差异化血管特征的能力;在解码阶段,采用基于空间和通道的双重注意力机制,使网络更加关注血管特征的上下文和几何空间信息,抑制病变等噪声的干扰.在DRIVE,CHASE_DB1和STARE数据集上进行实验的结果表明,所提网络图像分割的准确率分别为96.92%,97.57%和97.51%,灵敏度分别为83.68%,84.99%和84.87%,受试者曲线下的面积(AUC)分别为98.67%,99.05%和99.02%;并通过在DRIVE和STARE数据集上的交叉训练,验证了该网络的泛化能力. 展开更多
关键词 眼底图像分割 编码-解码网络 轻量级网络 结构化卷积 双重注意力机制
下载PDF
基于高低频特征增强的图像去雾 被引量:2
15
作者 卢昂 储珺 冷璐 《计算机工程》 CAS CSCD 北大核心 2023年第8期174-181,共8页
图像去雾是典型的不适定问题,编解码网络是常用的去雾网络架构,编解码网络由编码器、解码器和连接两者的特征转换器构成。已有去雾算法生成的去雾图像通常质量较低,存在局部细节去雾不彻底、颜色失真或引入噪声等问题。针对基于编解码... 图像去雾是典型的不适定问题,编解码网络是常用的去雾网络架构,编解码网络由编码器、解码器和连接两者的特征转换器构成。已有去雾算法生成的去雾图像通常质量较低,存在局部细节去雾不彻底、颜色失真或引入噪声等问题。针对基于编解码网络的去雾算法在设计特征转换器时没有充分利用小尺度特征、解码阶段仅利用对应层编码特征的问题,提出一种基于高低频特征增强的去雾算法。在特征转换阶段,设计扩张残差组件并组成上下文聚合网络,充分利用大感受野的低分辨率特征,提取特征图远距离相关性,增强低频小尺度特征。设计基于通道注意力的多级特征重用网络,实现浅层高频特征的重利用,同时深度融合解码重建特征,增强视觉感知特征的恢复。在编码阶段构建视觉特性感知模块,利用残差块在局部建模方面的优势增强浅层丰富的高频视觉特征。实验结果表明,与AOD-Net、PFF-Net等去雾算法相比,该算法的PSNR和SSIM指标均有明显优势,在室内合成数据集SOTS和室外真实数据集Dense-Haze上,所提算法的PSNR和SSIM分别高出性能次优算法0.77 dB、0.000 7和0.40 dB、0.037 1。 展开更多
关键词 图像去雾 编解码网络 扩张残差 特征增强 通道注意力
下载PDF
基于门控位置编码的壁画图像多级色彩还原
16
作者 徐志刚 张创 《计算机应用》 CSCD 北大核心 2024年第9期2931-2937,共7页
近年来,壁画图像的色彩还原研究已成为壁画文物保护和展示领域的一个热点问题。针对壁画色彩还原面临的整体特征信息难以有效提取和保持,局部色彩还原易出现假色以及色彩溢出等问题,提出基于门控位置编码的壁画图像多级色彩还原方法。首... 近年来,壁画图像的色彩还原研究已成为壁画文物保护和展示领域的一个热点问题。针对壁画色彩还原面临的整体特征信息难以有效提取和保持,局部色彩还原易出现假色以及色彩溢出等问题,提出基于门控位置编码的壁画图像多级色彩还原方法。首先,构建基于全局特征约束的编码器网络,并通过改进的多核多值池化算法提取图像的全局特征梯度作为下采样取值标准以建立壁画图像特征金字塔,从而减少壁画图像在特征编码过程中的整体特征损失;其次,为准确还原壁画图像的局部色彩信息,设计基于门控位置编码的色彩迁移模块,该模块通过约束空间域中内容特征与色彩特征之间相似性核的学习,构建色彩特征在待还原壁画图像中的准确映射,从而减少还原图像中的假色现象与色彩溢出。实验结果表明,该方法所生成的壁画还原图像相较于AdaIN(Adaptive Instance Normalization)、AST(ArbitraryStyleTransfer)等对比方法所生成的壁画还原图像,NIQE(NaturalImageQuality Evaluator)和PIQE(Perception based Image Quality Evaluator)都取得了最优的结果。可见,所提方法能有效还原壁画色彩信息并保持待还原壁画图像的整体结构纹理特征。 展开更多
关键词 编码器-解码器网络 壁画图像 色彩还原 全局特征 位置编码
下载PDF
基于双参考优化的壁画图像色彩还原
17
作者 徐志刚 张聪 《计算机工程》 CAS CSCD 北大核心 2024年第2期345-352,共8页
褪变色壁画图像的色彩还原研究可以促进壁画的保护和展示。壁画图像色彩还原旨在将退化壁画图像的色彩褪变区域还原为原有色彩。常规的基于单幅参考壁画图像的色彩还原方法难以选取与退化壁画图像相似的参考壁画图像,进而影响色彩还原... 褪变色壁画图像的色彩还原研究可以促进壁画的保护和展示。壁画图像色彩还原旨在将退化壁画图像的色彩褪变区域还原为原有色彩。常规的基于单幅参考壁画图像的色彩还原方法难以选取与退化壁画图像相似的参考壁画图像,进而影响色彩还原质量。为此,提出一种基于双参考优化的壁画图像色彩还原方法。采用双参考策略,即使用2幅参考壁画图像对退化壁画图像进行色彩还原,利用图像优化模块抑制褪变色壁画图像中普遍存在的噪声、划痕等多重退化,通过编码器-解码器网络编码提取壁画图像多尺度特征,并构建特征融合模块优化壁画图像的多尺度特征。采用双参考指导模块计算参考壁画图像与退化壁画图像的语义对应置信度,以实现图像区域间的相似性匹配,并实现2幅参考壁画图像的风格融合。在此基础上,利用融合特征实现退化壁画图像的色彩还原。实验结果表明,该方法可以较准确地还原退化壁画图像色彩,同时能较好保持壁画图像原有的边缘结构信息,并且使用无参考图像质量评估指标对各个方法的还原壁画图像进行客观评估,与对比方法相比,该方法在客观评估指标上最多可降低12.2%。 展开更多
关键词 褪变色图像 壁画图像 色彩还原 编码器-解码器网络 双参考优化方法
下载PDF
基于新型编码解码网络的复杂输电线识别
18
作者 李运堂 李恒杰 +3 位作者 张坤 王斌锐 关山越 陈源 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第6期1133-1141,共9页
构建新型编码解码网络实现图像中多根交叉复杂输电线的高精度快速识别.为了减少网络参数,编码器取常规MobileNetV3的前16层,并且采用坐标注意力机制代替常规MobileNetV3的挤压和激励注意力机制,获取特征图的通道信息和位置信息;解码器... 构建新型编码解码网络实现图像中多根交叉复杂输电线的高精度快速识别.为了减少网络参数,编码器取常规MobileNetV3的前16层,并且采用坐标注意力机制代替常规MobileNetV3的挤压和激励注意力机制,获取特征图的通道信息和位置信息;解码器通过金字塔池化模块获取输电线多尺度特征信息,提高识别精度;采用跳跃链接将编码器第2、4、7、11和13层特征图经锐化核卷积处理后分别与解码器的特征图堆叠,加强复杂输电线边缘特征提取;引入混合损失函数解决图像中输电线像素少、背景像素多的类别不平衡问题;利用迁移学习加快网络训练速度.实验结果表明,新型编码解码网络的平均像素精度(MPA)、平均交并比(MIOU)和识别速度分别为92.18%、84.27%和32帧/s,优于PSPNet、U2Net和其他输电线识别网络的. 展开更多
关键词 复杂输电线 编码解码网络 MobileNetV3 注意力机制 损失函数
下载PDF
基于编码-解码网络的大容量鲁棒图像隐写方案
19
作者 董炜娜 刘佳 +2 位作者 潘晓中 陈立峰 孙文权 《计算机应用》 CSCD 北大核心 2024年第3期772-779,共8页
针对基于编码-解码网络的大容量隐写模型存在鲁棒性弱、无法抵抗噪声攻击和信道压缩的问题,提出一种基于编码-解码网络的大容量鲁棒图像隐写方案。首先,设计了基于密集连接卷积网络(DenseNet)的编码器、解码器和判别器,编码器将秘密信... 针对基于编码-解码网络的大容量隐写模型存在鲁棒性弱、无法抵抗噪声攻击和信道压缩的问题,提出一种基于编码-解码网络的大容量鲁棒图像隐写方案。首先,设计了基于密集连接卷积网络(DenseNet)的编码器、解码器和判别器,编码器将秘密信息和载体图像联合编码成隐写图像,解码器提取秘密信息,判别器用于区分载体图像和隐写图像。在编码器和解码器中间加入噪声层,采用Dropout、JPEG压缩、高斯模糊、高斯噪声和椒盐噪声模拟真实环境下的各类噪声攻击,编码器输出的隐写图像经过不同种类的噪声处理,再由解码器解码;通过训练模型,解码器能够对噪声处理后的隐写图像提取秘密信息,以抵抗噪声攻击。实验结果表明,所提方案在360×360像素的图像上隐写容量达到0.45~0.95 bpp,与次优的鲁棒隐写方案相比,相对嵌入容量提升了2.04倍;解码准确率可达0.72~0.97;与未添加噪声层的隐写方案相比,平均解码准确率提高了44个百分点。所提方案在保证高嵌入量、高编码图片质量的同时具有更强的抗噪声攻击能力。 展开更多
关键词 深度学习 信息隐藏 图像隐写 大容量 鲁棒性 编码-解码网络 对抗性训练
下载PDF
CG-Net改进的结直肠癌病灶分割算法
20
作者 李兰兰 胡益煌 +2 位作者 王大彪 徐斌 李娟 《计算机工程与设计》 北大核心 2024年第1期299-306,共8页
为解决深度学习分割算法在病灶的细节分割上存在漏判且模型参数量较大不利于实际应用的问题,提出一种基于改进的CG-Net的深度轻量化分割神经网络。在编码块加入改进高效金字塔拆分注意力模块和深度可分离卷积,以学习丰富多尺度全局特征... 为解决深度学习分割算法在病灶的细节分割上存在漏判且模型参数量较大不利于实际应用的问题,提出一种基于改进的CG-Net的深度轻量化分割神经网络。在编码块加入改进高效金字塔拆分注意力模块和深度可分离卷积,以学习丰富多尺度全局特征;采用残差思想将注意力模块与编码块结合,提出高效金字塔语境引导模块,帮助网络学习全局和局部特征信息。在中山大学附属第六医院提供的腹部MRI图像数据库的结直肠肿瘤病灶分割实验中,验证了改进模型算法在分割精度和模型轻量化方面的有效性。 展开更多
关键词 深度学习 编码解码网络 轻量级 深度可分离卷积 医学图像分割 注意力机制 结直肠癌
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部