In this paper, we prove the existence of global classical solutions to time-dependent Ginzburg-Landau(TDGL) equations. By the properties of Besov and Sobolev spaces, together with the energy method, we establish the...In this paper, we prove the existence of global classical solutions to time-dependent Ginzburg-Landau(TDGL) equations. By the properties of Besov and Sobolev spaces, together with the energy method, we establish the global existence and uniqueness of classical solutions to the initial boundary value problem for time-dependent Ginzburg-Landau equations.展开更多
The Duffin-Kemmer-Petiau equation (DKP) is studied in the presence of a pseudo-harmonic oscillatory ring-shaped potential in (1 + 3)-dimensional space-time for spin-one particles. The exact energy eigenvalues and...The Duffin-Kemmer-Petiau equation (DKP) is studied in the presence of a pseudo-harmonic oscillatory ring-shaped potential in (1 + 3)-dimensional space-time for spin-one particles. The exact energy eigenvalues and the eigenfunctions are obtained using the Nikiforov-Uvarov method.展开更多
基金Supported by National Natural Science Foundation of China(11201415,11571159)Program for New Century Excellent Talents in Fujian Province University(JA14191)
文摘In this paper, we prove the existence of global classical solutions to time-dependent Ginzburg-Landau(TDGL) equations. By the properties of Besov and Sobolev spaces, together with the energy method, we establish the global existence and uniqueness of classical solutions to the initial boundary value problem for time-dependent Ginzburg-Landau equations.
文摘The Duffin-Kemmer-Petiau equation (DKP) is studied in the presence of a pseudo-harmonic oscillatory ring-shaped potential in (1 + 3)-dimensional space-time for spin-one particles. The exact energy eigenvalues and the eigenfunctions are obtained using the Nikiforov-Uvarov method.