A preliminary study of b value of rocks with two kinds of structural models has been made on the base of a new acoustic emission recording system. It shows that b value of the sample decreases obviously when the sampl...A preliminary study of b value of rocks with two kinds of structural models has been made on the base of a new acoustic emission recording system. It shows that b value of the sample decreases obviously when the sample with compressive en echelon faults changes into a tensile one after interchange occurs between stress axis σ1 and σ2. A similar experiment is observed when the sample with tensile en echelon faults changes into that with a bend fault after two segments of the en echelon fault linking up. These facts indicate that the variation of b value may con-tain the information of the regional dominant structural model. Therefore, b-value analyses could be a new method for studying regional dominant structural models.展开更多
The spatio-temporal characteristics of acoustic emission (AE) during the deformation of rock samples with compressional and extensional en-echelon faults have been studied. The results show that the pre-existing struc...The spatio-temporal characteristics of acoustic emission (AE) during the deformation of rock samples with compressional and extensional en-echelon faults have been studied. The results show that the pre-existing structure can significantly influence the patterns of AE spatial distribution. With increasing of differential stress, AE events firstly cluster around the two ends of pre-existing faults inside the jog and then along the line joining the two ends. The biggish AE events often occur around one end repeatedly. The image of AE clusters indicates the direction and the area of the fracture propagation. The direction of the macroscopic fracture in extensional and compressional jogs is perpendicular and parallel to the direction of axial stress, respectively. The weakening process before the fracturing of jog area is remarkable, and one of the typical precursors for the instability is that the cumulative frequency of AE events increases exponentially. After the fracturing of the jog the frequency and releasing strain energy of AE events decrease gradually. During the friction period, there is no precursory increasing of AE activity before the big stick-slip events. The change of b value in jog shows a typical change of decreasing tendentiously returning quickly before the instability. The decrease of b value occurs in the process of stress increasing and sometime goes down to the weakening stage, and the quick increase b values appears in a short time just before the instability. The comparative analysis shows that the difference in b value due to the different structures is larger than b value variation caused by increase of the differential stress. For the same sample, the temporal sequence of AE is strongly affected by the mechanical state, and the high loading velocity corresponds to the high release rate of strain energy and low b value. Due to its lower failure strength, the broken area is sensitive to small changes in differential stress. Therefore, it offers a potential explanation for the phenomena of 展开更多
基金National Natural Science Foundation of China (Grant No. 40072067) and Minister of Science and Technology of China (2004BA601B01).
文摘A preliminary study of b value of rocks with two kinds of structural models has been made on the base of a new acoustic emission recording system. It shows that b value of the sample decreases obviously when the sample with compressive en echelon faults changes into a tensile one after interchange occurs between stress axis σ1 and σ2. A similar experiment is observed when the sample with tensile en echelon faults changes into that with a bend fault after two segments of the en echelon fault linking up. These facts indicate that the variation of b value may con-tain the information of the regional dominant structural model. Therefore, b-value analyses could be a new method for studying regional dominant structural models.
基金Project Study on the Short-term Forecasting Technique of Strong Earthquake (01-04-01) during the Tenth Five-Year Plan from Ministry of Science and Technology of China and Joint Seismological Science Foundation of China (102037).
文摘The spatio-temporal characteristics of acoustic emission (AE) during the deformation of rock samples with compressional and extensional en-echelon faults have been studied. The results show that the pre-existing structure can significantly influence the patterns of AE spatial distribution. With increasing of differential stress, AE events firstly cluster around the two ends of pre-existing faults inside the jog and then along the line joining the two ends. The biggish AE events often occur around one end repeatedly. The image of AE clusters indicates the direction and the area of the fracture propagation. The direction of the macroscopic fracture in extensional and compressional jogs is perpendicular and parallel to the direction of axial stress, respectively. The weakening process before the fracturing of jog area is remarkable, and one of the typical precursors for the instability is that the cumulative frequency of AE events increases exponentially. After the fracturing of the jog the frequency and releasing strain energy of AE events decrease gradually. During the friction period, there is no precursory increasing of AE activity before the big stick-slip events. The change of b value in jog shows a typical change of decreasing tendentiously returning quickly before the instability. The decrease of b value occurs in the process of stress increasing and sometime goes down to the weakening stage, and the quick increase b values appears in a short time just before the instability. The comparative analysis shows that the difference in b value due to the different structures is larger than b value variation caused by increase of the differential stress. For the same sample, the temporal sequence of AE is strongly affected by the mechanical state, and the high loading velocity corresponds to the high release rate of strain energy and low b value. Due to its lower failure strength, the broken area is sensitive to small changes in differential stress. Therefore, it offers a potential explanation for the phenomena of