Porous materials as emerging potential adsorbents have received much more attention because they are capable of capturing various pollutants with fast adsorption rate, high adsorption capacity, good selectivity and ex...Porous materials as emerging potential adsorbents have received much more attention because they are capable of capturing various pollutants with fast adsorption rate, high adsorption capacity, good selectivity and excellent reusability.In order to prepare porous materials with decent porous structure, Pickering emulsion template method has been proved to be one of the most effective technologies to create pore structure.This paper reviewed comprehensively the latest research progress on the preparation of porous materials from various Pickering emulsions and their applications in the decontamination of pollutants(e.g., heavy metal ions, organic pollutants) and in the oil/water separation.It was expected that the summaries and discussions in this review will provide insights into the design and fabrication of new efficient porous adsorbents, and also give us a better understanding of the subject.展开更多
The morphology regulation of hollow silica microspheres is significant for their properties and applications. In this paper, hollow silica microspheres were formed through the hydrolysis and condensation reaction of t...The morphology regulation of hollow silica microspheres is significant for their properties and applications. In this paper, hollow silica microspheres were formed through the hydrolysis and condensation reaction of tetraethyl orthosilicate(TEOS) at the interface of the emulsion droplet templates composed of liquid paraffin and TEOS, followed by dissolving paraffin with ethanol. The effects of various factors including the emulsifier structure and content, TEOS content, catalyst type, and the ethanol content in the continuous water phase on the particle size, shell thickness and morphology of the prepared hollow silica microspheres were studied in detail. The results show that the diffusion and contact of TEOS and water molecules as well as the hydrolysis condensation reaction of TEOS at the oil-water interface are two critical processes for the synthesis and morphological regulation of hollow silica microspheres. Cationic emulsifier with a hydrophobic chain of appropriate length is the prerequisite for the successful synthesis of hollow silica microspheres. The ethanol content in water phase is the dominant factor to determine the average diameter of hollow microspheres, which can vary from 96 nm to 660 nm with the increase of the volume ratio of alcohol-water from 0 to 0.7. The silica wall thickness varies with the content and the hydrophobic chain length of the emulsifier, TEOS content, and the activity of the catalyst. The component of the soft template will affect the morphology of the silica wall. When the liquid paraffin is replaced by cyclohexane, hollow microspheres with fibrous mesoporous silica wall are fabricated. This work not only enriches the basic theory of interfacial polymerization in the emulsion system, but also provides ideas and methods for expanding the morphology and application of hollow silica microspheres.展开更多
Porous polymer beads(PPBs) containing hierarchical bimodal pore structure with gigapores and meso-macropores were prepared by polymerization-induced phase separation(PIPS) and emulsion-template technique in a glas...Porous polymer beads(PPBs) containing hierarchical bimodal pore structure with gigapores and meso-macropores were prepared by polymerization-induced phase separation(PIPS) and emulsion-template technique in a glass capillary microfluidic device(GCMD). Fabrication procedure involved the preparation of water-in-oil emulsion by emulsifying aqueous solution into the monomer solution that contains porogen. The emulsion was added into the GCMD to fabricate the(water-in-oil)-in-water double emulsion droplets. The flow rate of the carrier continuous phase strongly influenced the formation mechanism and size of droplets. Formation mechanism transformed from dripping to jetting and size of droplets decreased from 550 μm to 250 μm with the increase in flow rate of the carrier continuous phase. The prepared droplets were initiated for polymerization by on-line UV-irradiation to form PPBs. The meso-macropores in these beads were generated by PIPS because of the presence of porogen and gigapores obtained from the emulsion-template. The pore morphology and pore size distribution of the PPBs were investigated extensively by scanning electron microscopy and mercury intrusion porosimetry(MIP). New pore morphology was formed at the edge of the beads different from traditional theory because of different osmolarities between the water phase of the emulsion and the carrier continuous phase. The morphology and proportion of bimodal pore structure can be tuned by changing the kind and amount of porogen.展开更多
The hierarchical design of mesoscale structures in droplet templates determines the structure and functionality of the resultant microparticles.In this review,we summarize recent progress on the control of microfluidi...The hierarchical design of mesoscale structures in droplet templates determines the structure and functionality of the resultant microparticles.In this review,we summarize recent progress on the control of microfluidic emulsion templates for the synthesis of polymeric microparticles with desired functionality and internal structure.We introduce strategies for controlling the morphology and interfacial stability of emulsion templates.These strategies are based on manipulation of the mesoscale structure of amphiphilic molecules and nanoparticles at emulsion-droplet interfaces.We also discuss strategies for controlling the mesoscale structure of microparticles,which involve manipulating the interfacial mass-transfer and chemical reactions during template synthesis.We provide insight on the use of these strategies for the rational design and fabrication of polymeric microparticles with predictable internal structures and functionality at the single-particle level.展开更多
Hollow polysiloxane particles with diameters between 1.40 and 1.60 micrometres were fabricated by consecutive cocondensation of methyltrimethoxysilane and diphenyldimethoxysilane monomers onto polydiphenylsiloxane, su...Hollow polysiloxane particles with diameters between 1.40 and 1.60 micrometres were fabricated by consecutive cocondensation of methyltrimethoxysilane and diphenyldimethoxysilane monomers onto polydiphenylsiloxane, subsequently removing the templated polydiphenylsiloxane by exposure to solvents. TEM and AFM measurement reveal that there are obvious hollow sphere structures for the polysiloxane microsphere particles. The hollow spheres are envisioned to have applications in areas ranging from dye-industry, catalysis, pharmaceutics to materials science.展开更多
基金supported by the National Natural Science Foundation of China (Nos.21706267, 41601303)the Major Projects of the Natural Science Foundation of Gansu, China (No.18JR4RA001)+1 种基金the Funds for Creative Research Groups of Gansu, China (No.17JR5RA306)the Youth Innovation Promotion Association CAS (No.2016370).
文摘Porous materials as emerging potential adsorbents have received much more attention because they are capable of capturing various pollutants with fast adsorption rate, high adsorption capacity, good selectivity and excellent reusability.In order to prepare porous materials with decent porous structure, Pickering emulsion template method has been proved to be one of the most effective technologies to create pore structure.This paper reviewed comprehensively the latest research progress on the preparation of porous materials from various Pickering emulsions and their applications in the decontamination of pollutants(e.g., heavy metal ions, organic pollutants) and in the oil/water separation.It was expected that the summaries and discussions in this review will provide insights into the design and fabrication of new efficient porous adsorbents, and also give us a better understanding of the subject.
基金supported by the National Natural Science Foundation of China (Nos. 51973205, 51773189)Zhuhai Industry-University-Research Institute Collaboration&Basic and Applied Basic Research Project (No. ZH_(2)2017001210059PWC)the Fundamental Research Funds for the Central Universities (Nos.WK9110000066, WK3450000005 and WK3450000006)。
文摘The morphology regulation of hollow silica microspheres is significant for their properties and applications. In this paper, hollow silica microspheres were formed through the hydrolysis and condensation reaction of tetraethyl orthosilicate(TEOS) at the interface of the emulsion droplet templates composed of liquid paraffin and TEOS, followed by dissolving paraffin with ethanol. The effects of various factors including the emulsifier structure and content, TEOS content, catalyst type, and the ethanol content in the continuous water phase on the particle size, shell thickness and morphology of the prepared hollow silica microspheres were studied in detail. The results show that the diffusion and contact of TEOS and water molecules as well as the hydrolysis condensation reaction of TEOS at the oil-water interface are two critical processes for the synthesis and morphological regulation of hollow silica microspheres. Cationic emulsifier with a hydrophobic chain of appropriate length is the prerequisite for the successful synthesis of hollow silica microspheres. The ethanol content in water phase is the dominant factor to determine the average diameter of hollow microspheres, which can vary from 96 nm to 660 nm with the increase of the volume ratio of alcohol-water from 0 to 0.7. The silica wall thickness varies with the content and the hydrophobic chain length of the emulsifier, TEOS content, and the activity of the catalyst. The component of the soft template will affect the morphology of the silica wall. When the liquid paraffin is replaced by cyclohexane, hollow microspheres with fibrous mesoporous silica wall are fabricated. This work not only enriches the basic theory of interfacial polymerization in the emulsion system, but also provides ideas and methods for expanding the morphology and application of hollow silica microspheres.
文摘Porous polymer beads(PPBs) containing hierarchical bimodal pore structure with gigapores and meso-macropores were prepared by polymerization-induced phase separation(PIPS) and emulsion-template technique in a glass capillary microfluidic device(GCMD). Fabrication procedure involved the preparation of water-in-oil emulsion by emulsifying aqueous solution into the monomer solution that contains porogen. The emulsion was added into the GCMD to fabricate the(water-in-oil)-in-water double emulsion droplets. The flow rate of the carrier continuous phase strongly influenced the formation mechanism and size of droplets. Formation mechanism transformed from dripping to jetting and size of droplets decreased from 550 μm to 250 μm with the increase in flow rate of the carrier continuous phase. The prepared droplets were initiated for polymerization by on-line UV-irradiation to form PPBs. The meso-macropores in these beads were generated by PIPS because of the presence of porogen and gigapores obtained from the emulsion-template. The pore morphology and pore size distribution of the PPBs were investigated extensively by scanning electron microscopy and mercury intrusion porosimetry(MIP). New pore morphology was formed at the edge of the beads different from traditional theory because of different osmolarities between the water phase of the emulsion and the carrier continuous phase. The morphology and proportion of bimodal pore structure can be tuned by changing the kind and amount of porogen.
基金The authors gratefully acknowledge support from the National Natural Science Foundation of China(91434202)the Program for Changjiang Scholars and Innovative Research Team in University(IRT15R48)State Key Laboratory of Polymer Materials Engi-neering(sklpme2014-1-01).
文摘The hierarchical design of mesoscale structures in droplet templates determines the structure and functionality of the resultant microparticles.In this review,we summarize recent progress on the control of microfluidic emulsion templates for the synthesis of polymeric microparticles with desired functionality and internal structure.We introduce strategies for controlling the morphology and interfacial stability of emulsion templates.These strategies are based on manipulation of the mesoscale structure of amphiphilic molecules and nanoparticles at emulsion-droplet interfaces.We also discuss strategies for controlling the mesoscale structure of microparticles,which involve manipulating the interfacial mass-transfer and chemical reactions during template synthesis.We provide insight on the use of these strategies for the rational design and fabrication of polymeric microparticles with predictable internal structures and functionality at the single-particle level.
文摘Hollow polysiloxane particles with diameters between 1.40 and 1.60 micrometres were fabricated by consecutive cocondensation of methyltrimethoxysilane and diphenyldimethoxysilane monomers onto polydiphenylsiloxane, subsequently removing the templated polydiphenylsiloxane by exposure to solvents. TEM and AFM measurement reveal that there are obvious hollow sphere structures for the polysiloxane microsphere particles. The hollow spheres are envisioned to have applications in areas ranging from dye-industry, catalysis, pharmaceutics to materials science.