期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多特征与复合分类法的中文微博情感分析
被引量:
8
1
作者
吴维
肖诗斌
《北京信息科技大学学报(自然科学版)》
2013年第4期39-45,共7页
为了提高微博的情感分析的准确率,选取微博文本中的动词和形容词作为特征,提出了基于层次结构的特征降维方法,采用基于表情符号的方法计算特征极性值。在此基础上,提出了基于特征极性值的位置权重计算方法,借助支持向量机(SVM)作为机器...
为了提高微博的情感分析的准确率,选取微博文本中的动词和形容词作为特征,提出了基于层次结构的特征降维方法,采用基于表情符号的方法计算特征极性值。在此基础上,提出了基于特征极性值的位置权重计算方法,借助支持向量机(SVM)作为机器学习模型将微博文本分为正面、负面和中性3类。也就是多特征提取,结合字典法与机器学习法2种算法,来提高情感分析的准确率。实验结果表明,该方法能取得平均为72.16%的准确率。提出的基于多特征与复合分类器的情感分析方法能够比较有效地对中文微博文本进行情感分类。
展开更多
关键词
微博
表情符号
复合分类法
位置权重
情感分类
下载PDF
职称材料
题名
基于多特征与复合分类法的中文微博情感分析
被引量:
8
1
作者
吴维
肖诗斌
机构
北京信息科技大学 网络文化与数字传播北京市重点实验室
出处
《北京信息科技大学学报(自然科学版)》
2013年第4期39-45,共7页
基金
国家自然科学基金项目资助(61171159
61271304)
文摘
为了提高微博的情感分析的准确率,选取微博文本中的动词和形容词作为特征,提出了基于层次结构的特征降维方法,采用基于表情符号的方法计算特征极性值。在此基础上,提出了基于特征极性值的位置权重计算方法,借助支持向量机(SVM)作为机器学习模型将微博文本分为正面、负面和中性3类。也就是多特征提取,结合字典法与机器学习法2种算法,来提高情感分析的准确率。实验结果表明,该方法能取得平均为72.16%的准确率。提出的基于多特征与复合分类器的情感分析方法能够比较有效地对中文微博文本进行情感分类。
关键词
微博
表情符号
复合分类法
位置权重
情感分类
Keywords
micro-blog
emoticon
picture
combined
classification
position
weight
sentiment
classification
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多特征与复合分类法的中文微博情感分析
吴维
肖诗斌
《北京信息科技大学学报(自然科学版)》
2013
8
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部