The influences of air preheating temperature, oxygen concentration, and fuel inlet temperature on flame properties, and NOx formation and emission in the furnace were studied with numerical simulation. The turbulence ...The influences of air preheating temperature, oxygen concentration, and fuel inlet temperature on flame properties, and NOx formation and emission in the furnace were studied with numerical simulation. The turbulence behavior was modeled using the standard k-ε model with wall function, and radiation was handled using discrete ordinate radiation model. The PDF (probability density function) /mixture fraction combustion model was used to simulate the propane combustion. Additionally, computations of NOx formation rates and NOx concentration were carried out using a post-processor on the basis of previously calculated velocities, turbulence, temperature, and chemical composition fields. The results showed that high temperature air combustion (HiTAC) is spread over a much larger volume than traditional combustion, flame volume increases with a reduction of oxygen concentration, and this trend is clearer if oxygen concentration in the preheated air is below 10%. The temperature profile becomes more uniform when oxygen concentration in preheated air decreases, especially at low oxygen levels. Increase in fuel inlet tempera- ture lessens the mixing of the fuel and air in primary combustion zone, creates more uniform distribution of reactants inside the flame, decreases the maximum temperature in furnace, and reduces NOx emission greatly.展开更多
Urea-formaldehyde (UF) adhesive is the main source of formaldehyde emission from UF-bonded boards. The components in waste tea leaves can react with formaldehyde to serve as a raw material in the production of low f...Urea-formaldehyde (UF) adhesive is the main source of formaldehyde emission from UF-bonded boards. The components in waste tea leaves can react with formaldehyde to serve as a raw material in the production of low formaldehyde emission boards. In our study, waste tea leaves and UF adhesive were employed in the preparation of waste tea leaves particleboard (WTLB). An orthogonal experimental method was applied to investigate the effects of process parameters on formaldehyde emission and mechanical properties of WTLB. The results indicated that: 1) waste tea leaves had the ability to abate formaldehyde emission from boards; and 2) density of the WTLB was a significant factor affecting its modulus of rupture (MOR), modulus of elasticity (MOE) and internal bonding (IB).展开更多
基金Item Sponsored by National Natural Science Foundation of China (90210028)
文摘The influences of air preheating temperature, oxygen concentration, and fuel inlet temperature on flame properties, and NOx formation and emission in the furnace were studied with numerical simulation. The turbulence behavior was modeled using the standard k-ε model with wall function, and radiation was handled using discrete ordinate radiation model. The PDF (probability density function) /mixture fraction combustion model was used to simulate the propane combustion. Additionally, computations of NOx formation rates and NOx concentration were carried out using a post-processor on the basis of previously calculated velocities, turbulence, temperature, and chemical composition fields. The results showed that high temperature air combustion (HiTAC) is spread over a much larger volume than traditional combustion, flame volume increases with a reduction of oxygen concentration, and this trend is clearer if oxygen concentration in the preheated air is below 10%. The temperature profile becomes more uniform when oxygen concentration in preheated air decreases, especially at low oxygen levels. Increase in fuel inlet tempera- ture lessens the mixing of the fuel and air in primary combustion zone, creates more uniform distribution of reactants inside the flame, decreases the maximum temperature in furnace, and reduces NOx emission greatly.
文摘Urea-formaldehyde (UF) adhesive is the main source of formaldehyde emission from UF-bonded boards. The components in waste tea leaves can react with formaldehyde to serve as a raw material in the production of low formaldehyde emission boards. In our study, waste tea leaves and UF adhesive were employed in the preparation of waste tea leaves particleboard (WTLB). An orthogonal experimental method was applied to investigate the effects of process parameters on formaldehyde emission and mechanical properties of WTLB. The results indicated that: 1) waste tea leaves had the ability to abate formaldehyde emission from boards; and 2) density of the WTLB was a significant factor affecting its modulus of rupture (MOR), modulus of elasticity (MOE) and internal bonding (IB).