We establish a Dahlberg-type perturbation theorem for second order divergence form elliptic operators with complex coefficients. In our previous paper, we showed the following result: If L_0 = div A^0(x)? + B^0(x) ...We establish a Dahlberg-type perturbation theorem for second order divergence form elliptic operators with complex coefficients. In our previous paper, we showed the following result: If L_0 = div A^0(x)? + B^0(x) · ? is a p-elliptic operator satisfying the assumptions of Theorem 1.1 then the LpDirichlet problem for the operator L_0 is solvable in the upper half-space Rn+. In this paper we prove that the Lpsolvability is stable under small perturbations of L_0. That is if L_1 is another divergence form elliptic operator with complex coefficients and the coefficients of the operators L_0 and L_1 are sufficiently close in the sense of Carleson measures, then the LpDirichlet problem for the operator L_1 is solvable for the same value of p. As a corollary we obtain a new result on Lpsolvability of the Dirichlet problem for operators of the form L = div A(x)? + B(x) · ? where the matrix A satisfies weaker Carleson condition(expressed in term of oscillation of coefficients). In particular the coefficients of A need no longer be differentiable and instead satisfy a Carleson condition that controls the oscillation of the matrix A over Whitney boxes. This result in the real case has been established by Dindoˇs,Petermichl and Pipher.展开更多
The present article deals with some boundary value problems for nonlinear elliptic equations with degenerate rank 0 including the oblique derivative problem. Firstly the formulation and estimates of solutions of the o...The present article deals with some boundary value problems for nonlinear elliptic equations with degenerate rank 0 including the oblique derivative problem. Firstly the formulation and estimates of solutions of the oblique derivative problem are given, and then by the above estimates and the method of parameter extension, the existence of solutions of the above problem is proved. In this article, the complex analytic method is used, namely the corresponding problem for degenerate elliptic complex equations of first order is firstly discussed, afterwards the above problem for the degenerate elliptic equations of second order is solved.展开更多
In this paper we prove a very general result concerning solvability of the resonant problem: Δu+λ<sub>k</sub>u+g(x, u)=h(x);u=0, xΩ, which immediately gives three generalized Landesman-Lazer conditi...In this paper we prove a very general result concerning solvability of the resonant problem: Δu+λ<sub>k</sub>u+g(x, u)=h(x);u=0, xΩ, which immediately gives three generalized Landesman-Lazer conditions. The most interesting application of the general result is concerned with the problem when λ<sub>k</sub>=λ<sub>1</sub>. in which case we prove solvability results for it under conditions which are not the standard Landesman-Lazer condition or only partly enjoy it. Furthermore, we propose a new sign condition and give a comprehensive extension of a main result of Figueiredo and Ni.展开更多
This paper is devoted to the study of the proper setting of the boundary conditions for the boundary value problems of the hyperbolic-elliptic coupled systems of first order. The wellposedness of the corresponding bou...This paper is devoted to the study of the proper setting of the boundary conditions for the boundary value problems of the hyperbolic-elliptic coupled systems of first order. The wellposedness of the corresponding boundary value problems is also established. The Lopatinski conditions for the boundary value problems of the elliptic systems is then extended to the case for hyperbolic-elliptic coupled systems. The result in this paper can be applied to the Euler system in fluid dynamics, especially to give wellposed boundary value problems describing subsonic flow.展开更多
We show a result of symmetry for a big class of problems with condition of Neumann on the boundary in the case one dimensional. We use the method of reflection of Alexandrov and we show one application of this method ...We show a result of symmetry for a big class of problems with condition of Neumann on the boundary in the case one dimensional. We use the method of reflection of Alexandrov and we show one application of this method and the maximum principle for elliptic operators in problems with conditions of Neumann. Some results of symmetry for elliptic problems with condition of Neumann on the boundary may be extended to elliptic operators more general than the Laplacian.展开更多
This article discusses the general boundary value problem for the nonlinear uniformly elliptic equation of second order in D (0.1) and the boundary condition,(0.2) in a multiply connected infinite domain D with the bo...This article discusses the general boundary value problem for the nonlinear uniformly elliptic equation of second order in D (0.1) and the boundary condition,(0.2) in a multiply connected infinite domain D with the boundary T. The above boundary value problem is called Problem G. Problem G extends the work [8] in which the equation (0.1) includes a nonlinear lower term and the boundary condition (0.2) is more general. If the complex equation (0.1) and the boundary condition (0.2) meet certain assumptions, some solvability results for Problem G can be obtained. By using reduction to absurdity, we first discuss a priori estimates of solutions and solvability for a modified problem. Then we present results on solvability of Problem G.展开更多
A class of nonlinear boundary value problems(BVP) for the second_order E 2 class elliptic systems in general form is discussed. By introducing a kind of transformation,this kind of BVP is reduced to a class of genera...A class of nonlinear boundary value problems(BVP) for the second_order E 2 class elliptic systems in general form is discussed. By introducing a kind of transformation,this kind of BVP is reduced to a class of generalized nonlinear Riemann_Hilbert BVP. And then some singular integral operators are introduced to establish the equivalent nonlinear singular integral equations. The solvability is proved under some suitable hypotheses by means of the properties of singular integral operators and the function theoretic methods.展开更多
文摘We establish a Dahlberg-type perturbation theorem for second order divergence form elliptic operators with complex coefficients. In our previous paper, we showed the following result: If L_0 = div A^0(x)? + B^0(x) · ? is a p-elliptic operator satisfying the assumptions of Theorem 1.1 then the LpDirichlet problem for the operator L_0 is solvable in the upper half-space Rn+. In this paper we prove that the Lpsolvability is stable under small perturbations of L_0. That is if L_1 is another divergence form elliptic operator with complex coefficients and the coefficients of the operators L_0 and L_1 are sufficiently close in the sense of Carleson measures, then the LpDirichlet problem for the operator L_1 is solvable for the same value of p. As a corollary we obtain a new result on Lpsolvability of the Dirichlet problem for operators of the form L = div A(x)? + B(x) · ? where the matrix A satisfies weaker Carleson condition(expressed in term of oscillation of coefficients). In particular the coefficients of A need no longer be differentiable and instead satisfy a Carleson condition that controls the oscillation of the matrix A over Whitney boxes. This result in the real case has been established by Dindoˇs,Petermichl and Pipher.
文摘The present article deals with some boundary value problems for nonlinear elliptic equations with degenerate rank 0 including the oblique derivative problem. Firstly the formulation and estimates of solutions of the oblique derivative problem are given, and then by the above estimates and the method of parameter extension, the existence of solutions of the above problem is proved. In this article, the complex analytic method is used, namely the corresponding problem for degenerate elliptic complex equations of first order is firstly discussed, afterwards the above problem for the degenerate elliptic equations of second order is solved.
文摘In this paper we prove a very general result concerning solvability of the resonant problem: Δu+λ<sub>k</sub>u+g(x, u)=h(x);u=0, xΩ, which immediately gives three generalized Landesman-Lazer conditions. The most interesting application of the general result is concerned with the problem when λ<sub>k</sub>=λ<sub>1</sub>. in which case we prove solvability results for it under conditions which are not the standard Landesman-Lazer condition or only partly enjoy it. Furthermore, we propose a new sign condition and give a comprehensive extension of a main result of Figueiredo and Ni.
基金the National Natural Science Foundation of China(No.10531020)the National Basic Research Program of China 2006CB805902+1 种基金the Doctorial Foundation of National Educational Ministry 20050246001the 111 Project.
文摘This paper is devoted to the study of the proper setting of the boundary conditions for the boundary value problems of the hyperbolic-elliptic coupled systems of first order. The wellposedness of the corresponding boundary value problems is also established. The Lopatinski conditions for the boundary value problems of the elliptic systems is then extended to the case for hyperbolic-elliptic coupled systems. The result in this paper can be applied to the Euler system in fluid dynamics, especially to give wellposed boundary value problems describing subsonic flow.
文摘We show a result of symmetry for a big class of problems with condition of Neumann on the boundary in the case one dimensional. We use the method of reflection of Alexandrov and we show one application of this method and the maximum principle for elliptic operators in problems with conditions of Neumann. Some results of symmetry for elliptic problems with condition of Neumann on the boundary may be extended to elliptic operators more general than the Laplacian.
文摘This article discusses the general boundary value problem for the nonlinear uniformly elliptic equation of second order in D (0.1) and the boundary condition,(0.2) in a multiply connected infinite domain D with the boundary T. The above boundary value problem is called Problem G. Problem G extends the work [8] in which the equation (0.1) includes a nonlinear lower term and the boundary condition (0.2) is more general. If the complex equation (0.1) and the boundary condition (0.2) meet certain assumptions, some solvability results for Problem G can be obtained. By using reduction to absurdity, we first discuss a priori estimates of solutions and solvability for a modified problem. Then we present results on solvability of Problem G.
文摘A class of nonlinear boundary value problems(BVP) for the second_order E 2 class elliptic systems in general form is discussed. By introducing a kind of transformation,this kind of BVP is reduced to a class of generalized nonlinear Riemann_Hilbert BVP. And then some singular integral operators are introduced to establish the equivalent nonlinear singular integral equations. The solvability is proved under some suitable hypotheses by means of the properties of singular integral operators and the function theoretic methods.