A review of our experience in range of electron spectroscopy of the physical vapor-phase deposition and growth of single- and multilayer nanostructures with atomic scale interfaces is presented. The foundation of an i...A review of our experience in range of electron spectroscopy of the physical vapor-phase deposition and growth of single- and multilayer nanostructures with atomic scale interfaces is presented. The foundation of an innovative methodology for the combined AES-EELS analysis of layered nanostructures is developed. The methodology includes: 1) determination of the composition, thickness, and the mechanism of phase transitions in nanocoatings under the probing depth most appropriated for the range of film thickness 1 - 10 ML;2) quantitative iteration Auger-analysis of the composition, thickness and growth mechanism of nanocoating;3) structural and phase analysis of nanocoatings with use of the analysis of position, shape and energy of the plasmon EELS peak and with subtracting the contribution from the substrate;4) analysis of phase transitions with use of the shift of the plasmon Auger-satellite and 5) non-destructive profiling of the composition of nanocoatings over depth with use of a dependence of the intensity and energy of EELS peaks on the value of the primary electron energy.展开更多
文摘A review of our experience in range of electron spectroscopy of the physical vapor-phase deposition and growth of single- and multilayer nanostructures with atomic scale interfaces is presented. The foundation of an innovative methodology for the combined AES-EELS analysis of layered nanostructures is developed. The methodology includes: 1) determination of the composition, thickness, and the mechanism of phase transitions in nanocoatings under the probing depth most appropriated for the range of film thickness 1 - 10 ML;2) quantitative iteration Auger-analysis of the composition, thickness and growth mechanism of nanocoating;3) structural and phase analysis of nanocoatings with use of the analysis of position, shape and energy of the plasmon EELS peak and with subtracting the contribution from the substrate;4) analysis of phase transitions with use of the shift of the plasmon Auger-satellite and 5) non-destructive profiling of the composition of nanocoatings over depth with use of a dependence of the intensity and energy of EELS peaks on the value of the primary electron energy.