The haemocompatibility of Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy was studied after surface heparinization. A layer of sol-gel TiO2 films was applied on the alloy samples followed by active treatment in the bio-functiona...The haemocompatibility of Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy was studied after surface heparinization. A layer of sol-gel TiO2 films was applied on the alloy samples followed by active treatment in the bio-functionalized solution for introducing the OH- and groups, and then the heparin was immobilized on the active TiO2 films through the electrostatic self assembly technology. It is shown that the heparinized films are mainly composed of anatase and rutile with smooth and dense surface. In vitro blood compatibility was evaluated by haemolysis test, clotting time and platelet adhesion behavior tests. The results show that the haemocompatibility of the alloy could be significantly improved by surface heparinization.展开更多
Photocatalytic dual-functional reaction under visible light irradiation represents a sustainable development strategy.In detail,H2production coupled with benzylamine oxidation can remarkably lower the cost by replacin...Photocatalytic dual-functional reaction under visible light irradiation represents a sustainable development strategy.In detail,H2production coupled with benzylamine oxidation can remarkably lower the cost by replacing sacrificial agents.In this work,Cd S quantum dots(Cd S QDs)were successfully loaded onto the surface of a porphyrinic metal-organic framework(Pd-PCN-222)by the electrostatic selfassembly at room temperature.The consequent Pd-PCN-222/CdS heterojunction composites displayed superb photocatalytic activity under visible light irradiation,achieving a H2production and benzylamine oxidation rate of 5069 and 3717μmol g^(-1)h^(-1)with>99%selectivity in 3 h.There is no noticeable loss of catalytic capability during three successive runs.Mechanistic studies by in situ electron spin resonance and X-ray photoelectron spectroscopy disclosed that CdS QDs injected photoexcited electrons to Pd-PCN-222 and then Zr6clusters under visible-light irradiation,and thus Cd S QDs and Zr6clusters behave as the photocatalytic oxidation and reduction centers,respectively.展开更多
Photocatalytic degradation and hydrogen production using solar energy through semiconductor photocatalysts are deemed to be a powerful approach for solving environmental and energy crisis.However,the biggest challenge...Photocatalytic degradation and hydrogen production using solar energy through semiconductor photocatalysts are deemed to be a powerful approach for solving environmental and energy crisis.However,the biggest challenge in photocatalysis is the efficient separation of photo-induced carriers.To this end,we report that the mesoporous TiO_(2)nanoparticles are anchored on highly conductive Ti_(3)C_(2)MXene co-catalyst by electrostatic self-assembly strategy.The constructed mesoporous TiO_(2)/Ti_(3)C_(2)composites display that the mesoporous TiO_(2)nanoparticles are uniformly distributed on the surface of layer structured Ti_(3)C_(2)nanosheets.More importantly,the as-obtained mesoporous TiO_(2)/Ti_(3)C_(2)composites reveal the significantly enhanced light absorption performance,photo-induced carriers separation and transfer ability,thus boosting the photocatalytic activity.The photocatalytic methyl orange degradation efficiency of mesoporous TiO_(2)/Ti_(3)C_(2)composite with an optimized Ti_(3)C_(2)content(3 wt%)can reach 99.6%within 40 min.The capture experiments of active species confirm that the·O_(2)-and·OH play major role in photocatalytic degradation process.Furthermore,the optimized mesoporous TiO_(2)/Ti_(3)C_(2)composite also shows an excellent photocatalytic H2 production rate of 218.85μmol g^(-1)h^(-1),resulting in a 5.6 times activity as compared with the pristine mesoporous TiO_(2)nanoparticles.This study demonstrates that the MXene family materials can be applied as highly efficient noble-metal-free co-catalysts in the field of photocatalysis.展开更多
Graphene has been extensively utilized in the domain of electromagnetic wave(EMW)absorption ma-terials because of its excellent electrical conductivity.However,the inferior impedance matching per-formance and the sing...Graphene has been extensively utilized in the domain of electromagnetic wave(EMW)absorption ma-terials because of its excellent electrical conductivity.However,the inferior impedance matching per-formance and the single loss mechanism vastly restrict the application.Hence,it’s an effective strat-egy to solve these issues by introducing magnetic components.Notably,layer double hydroxide(LDH)is an appropriate template to obtain magnetic component materials.Considering that ferromagnetic met-als such as Fe,Co,Ni,and their corresponding metal oxides are usually treated as magnetic compo-nents which are promising candidates for EMW absorption materials.Therefore,in this work,a FeNi-layered double hydroxide-reduced graphene oxide(FeNi-LDH-rGO)aerogel was synthesized through a series of processes such as electrostatic self-assembly,hydrothermal,freeze-drying,and annealing.The magnetic NiFe_(2)O_(4)@FeNi_(3)core-shell nanospheres were obtained from FeNi-LDH precursor,anchoring on rGO nanosheets after the annealing treatment.Furthermore,the effects of different mass ratios of LDH to GO as well as different annealing temperatures of LDH-rGO aerogel on the EMW absorption prop-erty and impedance matching performance were explored.As a consequence,the fabricated ultralight 600LDH-rGO 2:1 aerogel shows a broad effective absorption bandwidth(EAB)of 7.04 GHz at a thickness of 2.3 mm with a low filling content of only 6 wt%and a low density of 4.4 mg/cm^(3).In conclusion,the synthetic LDH-rGO aerogels offer an effective strategy for preparing EMW absorption materials that own three-dimensional porous network structure and unique magnetic NiFe_(2)O_(4)@FeNi_(3)core-shell struc-ture nanospheres.展开更多
Polymerization-induced self-assembly(PISA)enables the simultaneous growth and self-assembly of block copolymers in one pot and therefore has developed into a high-efficiency platform for the preparation of polymer ass...Polymerization-induced self-assembly(PISA)enables the simultaneous growth and self-assembly of block copolymers in one pot and therefore has developed into a high-efficiency platform for the preparation of polymer assemblies with high concentration and excellent reproducibility.During the past decade,the driving force of PISA has extended from hydrophobic interactions to other supramolecular interactions,which has greatly innovated the design of PISA,enlarged the monomer/solvent toolkit,and endowed the polymer assemblies with intrinsic dynamicity and responsiveness.To unravel the important role of driving forces in the formation of polymeric assemblies,this review summarized the recent development of PISA from the perspective of driving forces.Motivated by this goal,here we give a brief overview of the basic principles of PISA and systematically discuss the various driving forces in the PISA system,including hydrophobic interactions,hydrogen bonding,electrostatic interactions,andπ-πinteractions.Furthermore,PISA systems that are driven and regulated by crystallization or liquid crystalline ordering were also highlighted.展开更多
Available onlineSilicon monoxide(SiO)is a promising anode material fo r lithium-ion batteries(LIBs)due to its high theoretical specific capacity(~2400 mAh/g),low working potential(<0.5 V vs.Li^+/Li),low cost,easy s...Available onlineSilicon monoxide(SiO)is a promising anode material fo r lithium-ion batteries(LIBs)due to its high theoretical specific capacity(~2400 mAh/g),low working potential(<0.5 V vs.Li^+/Li),low cost,easy synthesis,nontoxicity,abundant natural source and smaller volume expansion than Si.However,low intrinsic electrical conductivity,low initial Coulombic efficiency(ICE)and inevitable volume expansion(~200%)impede its practical application.Here we fabricate SiO/wrinkled MXene composite(SiO-WM)by an electrostatic self-assembly method.Importantly,this method is simple,scalable and taking into account all the issues of SiO.As a result,the SiO-WM exhibits imp roved rate capability,cycling performance and ICE than bare SiO.展开更多
In this work, we demonstrated a simple and efficacious two-step method for the synthesis of Ag@Au core-shell nanoparticles (Ag@AuNPs) and the Ag/Au hollow nanocages (Ag/AuNCs) with Ag nanoparticles (AgNPs) as se...In this work, we demonstrated a simple and efficacious two-step method for the synthesis of Ag@Au core-shell nanoparticles (Ag@AuNPs) and the Ag/Au hollow nanocages (Ag/AuNCs) with Ag nanoparticles (AgNPs) as seeds by adjusting pH, and the preparation of hybrid Ag@AuNPs- or Ag/AuNCs-graphene oxide nanocomposites (Ag@AuNPs-GO or Ag/AuNCs-GO) based on the self-assembly. It was noticed from the elec- trostatic assembly experiment that the loading amount of Ag/AuNCs on GO nanosheet was more than that of Ag@AuNPs. The as-synthesized hybrid materials were characterized by transmission electron microscopy, atomic force microscopy, ξ-potential, high-angle annular dark- field scanning transmission electron microscopy, thermo- gravimetric analyzer and X-ray diffraction. Catalytic activities of Ag@AuNPs, Ag/AuNCs and Ag/AuNCs-GO nanostructures were investigated in the reduction of 4-, 3-or 2-nitrophenol to 4-, 3- or 2-aminophenol, and on the basis of comparative kinetic studies the following trend was obtained for the related catalytic activity: Ag/AuNCs- GO 〉 Ag/AuNCs 〉 Ag@AuNPs. These observations were attributed to the simultaneous effects of surface area available for catalytic reaction and composition of the hybrid nanostructures.展开更多
Short DNA represents an important class of bioma-cromolecules that arewidely applied in gene therapy,editing,and modulation.However,the development of simple and reliable methods for their intracellular delivery remai...Short DNA represents an important class of bioma-cromolecules that arewidely applied in gene therapy,editing,and modulation.However,the development of simple and reliable methods for their intracellular delivery remains a challenge.Herein,we describe that seven water-soluble,homogeneous supramole-cular organic frameworks(SOFs)with a well-defined pore size and high stability in water that can accom-plish in situ inclusion of single-stranded(ss)and double-stranded(ds)DNA(21,23,and 58 nt)and effective intracellular delivery(including two non-cancerous and six cancerous cell lines).展开更多
Low patency ratio of small-diameter vascular grafts remains a major challenge due to the occurrence of thrombosis formation and intimal hyperplasia after transplantation.Although developing the functional coating with...Low patency ratio of small-diameter vascular grafts remains a major challenge due to the occurrence of thrombosis formation and intimal hyperplasia after transplantation.Although developing the functional coating with release of bioactive molecules on the surface of small-diameter vascular grafts are reported as an effective strategy to improve their patency ratios,it is still difficult for current functional coatings cooperating with spatiotemporal control of bioactive molecules release to mimic the sequential requirements for antithrombogenicity and endothelialization.Herein,on basis of 3D-printed polyelectrolyte-based vascular grafts,a biologically inspired release system with sequential release in spatiotemporal coordination of dual molecules through an electrostatic self-assembly was first described.A series of tubes with tunable diameters were initially fabricated by a coaxial extrusion printing method with customized nozzles,in which a polyelectrolyte ink containing of ε-polylysine and sodium alginate was used.Further,dual bioactive molecules,heparin with negative charges and Tyr-Ile-Gly-Ser-Arg(YIGSR)peptide with positive charges were layer-by-layer assembled onto the surface of these 3D-printed tubes.Due to the electrostatic interaction,the sequential release of heparin and YIGSR was demonstrated and could construct a dynamic microenvironment that was thus conducive to the antithrombogenicity and endothelialization.This study opens a new avenue to fabricate a small-diameter vascular graft with a biologically inspired release system based on electrostatic interaction,revealing a huge potential for development of small-diameter artificial vascular grafts with good patency.展开更多
Constructing electrode materials with large capacity and good conductivity is an effective approach to improve the capacitor performance of asymmetric supercapacitors(ASCs).In this paper,ZnCo_(2)S_(4)core-shell nanosp...Constructing electrode materials with large capacity and good conductivity is an effective approach to improve the capacitor performance of asymmetric supercapacitors(ASCs).In this paper,ZnCo_(2)S_(4)core-shell nanospheres are constructed by two-step hydrothermal method.In order to improve the chemical activity of ZnCo_(2)S_(4),ZnCo_(2)S_(4)is activated using cetyltrimethylammonium bromide(CTAB).Then,MXene nanosheets are fixed on the surface of ZnCo_(2)S_(4)by electrostatic selfassembly method to improve the specific surface area of ZnCo_(2)S_(4)and MXene-wrapped ZnCo_(2)S_(4)composite is prepared in this work.Owing to the synergy effect between MXene nanosheets and ZnCo_(2)S_(4)core-shell nanospheres,the as-prepared composite displays fast ion transfer rate and charge/discharge process.The capacity of the MXenewrapped ZnCo_(2)S_(4)composite can reach 1072 F·g^(-1),which is far larger than that of ZnCo_(2)S_(4)(407 F·g^(-1))at 1 A·g^(-1).An ASC device is assembled,which delivers 1.7 V potential window and superior cyclic stability(95.41%capacitance retention).Furthermore,energy density of this device is up to 30.46 Wh·kg^(-1)at a power density of850 W·kg^(-1).The above results demonstrate that MXenewrapped ZnCo_(2)S_(4)composite has great application prospects in electrochemical energy storage field.展开更多
High-performance epoxy(EP)composites with excellent thermal conductivity and dielectric properties have attracted increasing attention for effective thermal management.In this work,three-dimensional(3D)structural func...High-performance epoxy(EP)composites with excellent thermal conductivity and dielectric properties have attracted increasing attention for effective thermal management.In this work,three-dimensional(3D)structural functional fillers were prepared by an electrostatic self-assembly approach.The negatively charged carbon nanotubes(nCNTs)prepared by carboxylation on the surface of CNTs were attached to the positively charged boron nitride(pBN)to form the 3D pBN@nCNTs functional fillers.The morphological characterizations of the formed 3D pBN@nCNTs fillers and epoxy composites were established,illustrating that nCNTs were linearly overlapped between the BN sheets,thus forming a 3D heat conduction network in the epoxy matrix.The synergistic effect of pBN with nCNTs on the enhancement of thermal conductivity and dielectric properties of composites was systematically studied.The experimental results demonstrated that the thermal conductivity of pBN@nCNTs/EP composites could reach 1.986 W m1K1 with the loading of 50 wt%fillers at 10:1 mass ratio of pBN:nCNTs,which is 464%and 124%higher than that of pure EP and BN/EP,respectively.Simultaneously,the dielectric permittivity was successfully increased to 15.14.Moreover,the thermal stability of the composites was synchronously enhanced.This study provides a facile path to fabricate thermosetting polymer composites with high thermal conductivity and dielectric properties.展开更多
基金Project (31100693/C100302) supported by the National Natural Science Foundation of ChinaProject (31011120049) supported by the Australia-China Special Fund, International Science Linkages Program co-supported by the Department of Innovation, Industry, Science and Research of Australia, and the Ministry of Science and Technology and National Science Foundation of China+1 种基金Project(2010ZDKG-96) supported by the Major Subject of "13115" Programs of Shaan’xi Province, ChinaProject (2012CB619102) supported by the National Basic Research Program of China
文摘The haemocompatibility of Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy was studied after surface heparinization. A layer of sol-gel TiO2 films was applied on the alloy samples followed by active treatment in the bio-functionalized solution for introducing the OH- and groups, and then the heparin was immobilized on the active TiO2 films through the electrostatic self assembly technology. It is shown that the heparinized films are mainly composed of anatase and rutile with smooth and dense surface. In vitro blood compatibility was evaluated by haemolysis test, clotting time and platelet adhesion behavior tests. The results show that the haemocompatibility of the alloy could be significantly improved by surface heparinization.
基金support from the National Natural Science Foundation of China(Nos.21773314,21821003 and 21890382)the Guangdong Natural Science Funds for Distinguished Young Scholar(No.2019B151502017)。
文摘Photocatalytic dual-functional reaction under visible light irradiation represents a sustainable development strategy.In detail,H2production coupled with benzylamine oxidation can remarkably lower the cost by replacing sacrificial agents.In this work,Cd S quantum dots(Cd S QDs)were successfully loaded onto the surface of a porphyrinic metal-organic framework(Pd-PCN-222)by the electrostatic selfassembly at room temperature.The consequent Pd-PCN-222/CdS heterojunction composites displayed superb photocatalytic activity under visible light irradiation,achieving a H2production and benzylamine oxidation rate of 5069 and 3717μmol g^(-1)h^(-1)with>99%selectivity in 3 h.There is no noticeable loss of catalytic capability during three successive runs.Mechanistic studies by in situ electron spin resonance and X-ray photoelectron spectroscopy disclosed that CdS QDs injected photoexcited electrons to Pd-PCN-222 and then Zr6clusters under visible-light irradiation,and thus Cd S QDs and Zr6clusters behave as the photocatalytic oxidation and reduction centers,respectively.
文摘Photocatalytic degradation and hydrogen production using solar energy through semiconductor photocatalysts are deemed to be a powerful approach for solving environmental and energy crisis.However,the biggest challenge in photocatalysis is the efficient separation of photo-induced carriers.To this end,we report that the mesoporous TiO_(2)nanoparticles are anchored on highly conductive Ti_(3)C_(2)MXene co-catalyst by electrostatic self-assembly strategy.The constructed mesoporous TiO_(2)/Ti_(3)C_(2)composites display that the mesoporous TiO_(2)nanoparticles are uniformly distributed on the surface of layer structured Ti_(3)C_(2)nanosheets.More importantly,the as-obtained mesoporous TiO_(2)/Ti_(3)C_(2)composites reveal the significantly enhanced light absorption performance,photo-induced carriers separation and transfer ability,thus boosting the photocatalytic activity.The photocatalytic methyl orange degradation efficiency of mesoporous TiO_(2)/Ti_(3)C_(2)composite with an optimized Ti_(3)C_(2)content(3 wt%)can reach 99.6%within 40 min.The capture experiments of active species confirm that the·O_(2)-and·OH play major role in photocatalytic degradation process.Furthermore,the optimized mesoporous TiO_(2)/Ti_(3)C_(2)composite also shows an excellent photocatalytic H2 production rate of 218.85μmol g^(-1)h^(-1),resulting in a 5.6 times activity as compared with the pristine mesoporous TiO_(2)nanoparticles.This study demonstrates that the MXene family materials can be applied as highly efficient noble-metal-free co-catalysts in the field of photocatalysis.
文摘Graphene has been extensively utilized in the domain of electromagnetic wave(EMW)absorption ma-terials because of its excellent electrical conductivity.However,the inferior impedance matching per-formance and the single loss mechanism vastly restrict the application.Hence,it’s an effective strat-egy to solve these issues by introducing magnetic components.Notably,layer double hydroxide(LDH)is an appropriate template to obtain magnetic component materials.Considering that ferromagnetic met-als such as Fe,Co,Ni,and their corresponding metal oxides are usually treated as magnetic compo-nents which are promising candidates for EMW absorption materials.Therefore,in this work,a FeNi-layered double hydroxide-reduced graphene oxide(FeNi-LDH-rGO)aerogel was synthesized through a series of processes such as electrostatic self-assembly,hydrothermal,freeze-drying,and annealing.The magnetic NiFe_(2)O_(4)@FeNi_(3)core-shell nanospheres were obtained from FeNi-LDH precursor,anchoring on rGO nanosheets after the annealing treatment.Furthermore,the effects of different mass ratios of LDH to GO as well as different annealing temperatures of LDH-rGO aerogel on the EMW absorption prop-erty and impedance matching performance were explored.As a consequence,the fabricated ultralight 600LDH-rGO 2:1 aerogel shows a broad effective absorption bandwidth(EAB)of 7.04 GHz at a thickness of 2.3 mm with a low filling content of only 6 wt%and a low density of 4.4 mg/cm^(3).In conclusion,the synthetic LDH-rGO aerogels offer an effective strategy for preparing EMW absorption materials that own three-dimensional porous network structure and unique magnetic NiFe_(2)O_(4)@FeNi_(3)core-shell struc-ture nanospheres.
基金National Natural Science Foundation of China,Grant/Award Number:21905171。
文摘Polymerization-induced self-assembly(PISA)enables the simultaneous growth and self-assembly of block copolymers in one pot and therefore has developed into a high-efficiency platform for the preparation of polymer assemblies with high concentration and excellent reproducibility.During the past decade,the driving force of PISA has extended from hydrophobic interactions to other supramolecular interactions,which has greatly innovated the design of PISA,enlarged the monomer/solvent toolkit,and endowed the polymer assemblies with intrinsic dynamicity and responsiveness.To unravel the important role of driving forces in the formation of polymeric assemblies,this review summarized the recent development of PISA from the perspective of driving forces.Motivated by this goal,here we give a brief overview of the basic principles of PISA and systematically discuss the various driving forces in the PISA system,including hydrophobic interactions,hydrogen bonding,electrostatic interactions,andπ-πinteractions.Furthermore,PISA systems that are driven and regulated by crystallization or liquid crystalline ordering were also highlighted.
基金the support from the National Natural Science Foundation of China(NSFC)(U20A20128,52263027,22379060,52173169 and 52222312)the"Double Thousand Plan"Science and Technology Innovation High-end Talent Project of Jiangxi Province(jxsq2019201049)+2 种基金the Natural Science Foundation of Jiangxi Province(20231ZDH04036,20212BAB214055 and 20224ACB204007)China National Postdoctoral Program for Innovative Talents(BX2021117)China Postdoctoral Science Foundation(2021M700060)。
基金supported by the National Natural Science Foundation of China(No.51972198)Shandong Provincial Science and Technology Key Project(No.2018GGX104002)+7 种基金Taishan Scholars Program of Shandong Province(No.tsqn201812002)Independent Innovation Foundation of Shandong Universitythe State Key Program of National Natural Science of China(Nos.61633015,51532005)the Young Scholars Program of Shandong University(No.2016WLJH03),the Project of the Taishan Scholar(No.ts201511004)Shandong Provincial Natural Science Foundation(No.ZR2017MB001)Discipline Construction of High-Level Talents of Shandong University(No.31370089963078)1000 Talent Plan program(No.31370086963030)the National Natural Science Foundation of China(No.21371108)。
文摘Available onlineSilicon monoxide(SiO)is a promising anode material fo r lithium-ion batteries(LIBs)due to its high theoretical specific capacity(~2400 mAh/g),low working potential(<0.5 V vs.Li^+/Li),low cost,easy synthesis,nontoxicity,abundant natural source and smaller volume expansion than Si.However,low intrinsic electrical conductivity,low initial Coulombic efficiency(ICE)and inevitable volume expansion(~200%)impede its practical application.Here we fabricate SiO/wrinkled MXene composite(SiO-WM)by an electrostatic self-assembly method.Importantly,this method is simple,scalable and taking into account all the issues of SiO.As a result,the SiO-WM exhibits imp roved rate capability,cycling performance and ICE than bare SiO.
基金Acknowledgments This work was supported by the National Nalural Science Foundation of China (21 105042), the Science Foundation of China Postdoctor (2014M560572), the Natural Science Foundation of Shandong Province IZR2015BM024), and Tai-Shan Scholar Research Fund of Shandong Province. The sludy was partially supported by grant NIH IR01DA037838 to Drs. Li and Nair.
文摘In this work, we demonstrated a simple and efficacious two-step method for the synthesis of Ag@Au core-shell nanoparticles (Ag@AuNPs) and the Ag/Au hollow nanocages (Ag/AuNCs) with Ag nanoparticles (AgNPs) as seeds by adjusting pH, and the preparation of hybrid Ag@AuNPs- or Ag/AuNCs-graphene oxide nanocomposites (Ag@AuNPs-GO or Ag/AuNCs-GO) based on the self-assembly. It was noticed from the elec- trostatic assembly experiment that the loading amount of Ag/AuNCs on GO nanosheet was more than that of Ag@AuNPs. The as-synthesized hybrid materials were characterized by transmission electron microscopy, atomic force microscopy, ξ-potential, high-angle annular dark- field scanning transmission electron microscopy, thermo- gravimetric analyzer and X-ray diffraction. Catalytic activities of Ag@AuNPs, Ag/AuNCs and Ag/AuNCs-GO nanostructures were investigated in the reduction of 4-, 3-or 2-nitrophenol to 4-, 3- or 2-aminophenol, and on the basis of comparative kinetic studies the following trend was obtained for the related catalytic activity: Ag/AuNCs- GO 〉 Ag/AuNCs 〉 Ag@AuNPs. These observations were attributed to the simultaneous effects of surface area available for catalytic reaction and composition of the hybrid nanostructures.
基金We thank the National Natural Science Foundation of China(Nos.21432004 and 21529201)for financial sup-port,Shanghai Synchrotron Radiation Facility for provid-ing BL16B1 and BL14B1 beamlines for collecting the synchrotron X-ray-scattering and diffraction data,and the SIBYLS Beamline 12.3.1 of the Advanced Light Source(ALS),Lawrence Berkeley National Laboratory,for collecting solution-phase,synchrotron small-angle X-ray-scattering data.
文摘Short DNA represents an important class of bioma-cromolecules that arewidely applied in gene therapy,editing,and modulation.However,the development of simple and reliable methods for their intracellular delivery remains a challenge.Herein,we describe that seven water-soluble,homogeneous supramole-cular organic frameworks(SOFs)with a well-defined pore size and high stability in water that can accom-plish in situ inclusion of single-stranded(ss)and double-stranded(ds)DNA(21,23,and 58 nt)and effective intracellular delivery(including two non-cancerous and six cancerous cell lines).
基金The authors gratefully acknowledge the support for this work from the National Key research and Development Program(Grant No.2018YFA0703100)the National Natural Science Foundation of China(Grant Nos.82072082,31900959)+2 种基金the Youth Innovation Promotion Association of CAS(Grant No.2019350)the Guangdong Natural Science Foundation(Grant No.2019A1515011277)the Shenzhen Fundamental Research Foundation(Grant No.JCYJ20180507182237428).
文摘Low patency ratio of small-diameter vascular grafts remains a major challenge due to the occurrence of thrombosis formation and intimal hyperplasia after transplantation.Although developing the functional coating with release of bioactive molecules on the surface of small-diameter vascular grafts are reported as an effective strategy to improve their patency ratios,it is still difficult for current functional coatings cooperating with spatiotemporal control of bioactive molecules release to mimic the sequential requirements for antithrombogenicity and endothelialization.Herein,on basis of 3D-printed polyelectrolyte-based vascular grafts,a biologically inspired release system with sequential release in spatiotemporal coordination of dual molecules through an electrostatic self-assembly was first described.A series of tubes with tunable diameters were initially fabricated by a coaxial extrusion printing method with customized nozzles,in which a polyelectrolyte ink containing of ε-polylysine and sodium alginate was used.Further,dual bioactive molecules,heparin with negative charges and Tyr-Ile-Gly-Ser-Arg(YIGSR)peptide with positive charges were layer-by-layer assembled onto the surface of these 3D-printed tubes.Due to the electrostatic interaction,the sequential release of heparin and YIGSR was demonstrated and could construct a dynamic microenvironment that was thus conducive to the antithrombogenicity and endothelialization.This study opens a new avenue to fabricate a small-diameter vascular graft with a biologically inspired release system based on electrostatic interaction,revealing a huge potential for development of small-diameter artificial vascular grafts with good patency.
基金financially supported by the Fundamental Research Funds for the Central Universities (No. 2019XKQYMS16)
文摘Constructing electrode materials with large capacity and good conductivity is an effective approach to improve the capacitor performance of asymmetric supercapacitors(ASCs).In this paper,ZnCo_(2)S_(4)core-shell nanospheres are constructed by two-step hydrothermal method.In order to improve the chemical activity of ZnCo_(2)S_(4),ZnCo_(2)S_(4)is activated using cetyltrimethylammonium bromide(CTAB).Then,MXene nanosheets are fixed on the surface of ZnCo_(2)S_(4)by electrostatic selfassembly method to improve the specific surface area of ZnCo_(2)S_(4)and MXene-wrapped ZnCo_(2)S_(4)composite is prepared in this work.Owing to the synergy effect between MXene nanosheets and ZnCo_(2)S_(4)core-shell nanospheres,the as-prepared composite displays fast ion transfer rate and charge/discharge process.The capacity of the MXenewrapped ZnCo_(2)S_(4)composite can reach 1072 F·g^(-1),which is far larger than that of ZnCo_(2)S_(4)(407 F·g^(-1))at 1 A·g^(-1).An ASC device is assembled,which delivers 1.7 V potential window and superior cyclic stability(95.41%capacitance retention).Furthermore,energy density of this device is up to 30.46 Wh·kg^(-1)at a power density of850 W·kg^(-1).The above results demonstrate that MXenewrapped ZnCo_(2)S_(4)composite has great application prospects in electrochemical energy storage field.
基金National Key Research and Development Program of China(2017YFB0903804)Science and Technology Program of the State Grid Corporation of China(No.5455DW170026).
文摘High-performance epoxy(EP)composites with excellent thermal conductivity and dielectric properties have attracted increasing attention for effective thermal management.In this work,three-dimensional(3D)structural functional fillers were prepared by an electrostatic self-assembly approach.The negatively charged carbon nanotubes(nCNTs)prepared by carboxylation on the surface of CNTs were attached to the positively charged boron nitride(pBN)to form the 3D pBN@nCNTs functional fillers.The morphological characterizations of the formed 3D pBN@nCNTs fillers and epoxy composites were established,illustrating that nCNTs were linearly overlapped between the BN sheets,thus forming a 3D heat conduction network in the epoxy matrix.The synergistic effect of pBN with nCNTs on the enhancement of thermal conductivity and dielectric properties of composites was systematically studied.The experimental results demonstrated that the thermal conductivity of pBN@nCNTs/EP composites could reach 1.986 W m1K1 with the loading of 50 wt%fillers at 10:1 mass ratio of pBN:nCNTs,which is 464%and 124%higher than that of pure EP and BN/EP,respectively.Simultaneously,the dielectric permittivity was successfully increased to 15.14.Moreover,the thermal stability of the composites was synchronously enhanced.This study provides a facile path to fabricate thermosetting polymer composites with high thermal conductivity and dielectric properties.