AIM To study the effect of a varyingconcentrations of arsenic trioxide on humanhepatoma cell line BEL-?402 cultured in vitro andits mechanism of action.METHODS The BEL-7402 cells were treatedwith arsenic trioxide(at ...AIM To study the effect of a varyingconcentrations of arsenic trioxide on humanhepatoma cell line BEL-?402 cultured in vitro andits mechanism of action.METHODS The BEL-7402 cells were treatedwith arsenic trioxide(at the concentrations of0.5,1,2 μmol/L,respectively)for 4 successivedays.The cell growth and proliferation wereobserved by cell counting and cell-growth curve.Morphologic changes were studied withelectronmicroscopy.Flow cytometry was usedto assay celI-DNA distribution and the proteinexpression of Bcl-2 and Bax detected byimmunocytochemical method.RESULTS The cell growth was significantlyinhibited by varying concentrations of arsenictrioxide as revealed by cell counting and cell-growth curve,which was dose- and time-dependent.Arsenic trioxide treatment at 0.5,1and 2 μmol/L resulted in a sub-G1 cell peak,theapoptosis rate of the control group was 9.31%and that of 0.5 μmol/L arsenic trioxide 15.53%,no significant difference was seen between thetwo.The apoptosis rates of 1,2 μmol/L arsenictrioxide were 19.10% and 21.87% respectively,which were much higher(both P【0.05).Decrease of G<sub>0</sub>/G<sub>1</sub> phase cells and increase of Sphase cells were observed by flow cytometry,suggesting the inhibition effect of 0.5,1,2 μmol/L arsenic trioxide on BEL-7402 cell lay in the G<sub>0</sub>/G<sub>1</sub> phase.Morphologic changes such asintact cell membrane,nucleic condensation,apoptotic body formation were seen undertransmission electronmicrescopy,whereas the0.5 mol/L arsenic trioxide-treated BEL-7402cells showed decrease of nucleocytoplasmicratio,round nucleus,well-differentiatedorganelles in the cytoplasm.The processes andmicrovilli on the cell surface of the experimentalgroups under scanning electron microscopy weresignificantly decreased.High expressions ofBcl-2 and Bax were detected in 1 and 2 μmol/Larsenic trioxide-treated cells,these were 46%,87.33% and 83.08%,95.83% respectively,among which that of Bax was more significant.Arsenic trioxide treatment at 0.5 μmol/Lresulted in a higher ex展开更多
In this paper, we describe three strata at the distal part of the pyroclastic-flow from the Tianchi volcano in 1215 (±15) eruption. One of the strata with crosslayers that are different from typical pyroclastic...In this paper, we describe three strata at the distal part of the pyroclastic-flow from the Tianchi volcano in 1215 (±15) eruption. One of the strata with crosslayers that are different from typical pyroclastic-flow strata may come from a ground-surge. The grain-size and scanning electron microscopy (SEM) analysis was performed to study the origin of the pyroclastic-flow. Characteristics of grain-size distribution show that it is similar with the ash cloud. Through the SEM analyses, we found some quench structures with less damage on the surfaces of the vitric pumices. These phenomena indicate that there has been hydration in the transportation processes at the distal of pyroclastic-flow. It has partly changed the transportation mechanism of pyroclastic-flow, which transitions form dense flow to diluted flow. This paper develops a new distal pyroclastic-flow model in the Tianchi volcano that can be divided into three stages, i.e. the quench stage, expanding stage and depositing stage.展开更多
Oxygen-evolving complex (OEC) protein is the original name for membrane-peripheral subunits of photosystem (PS) II. Recently, multiple isoforms and homologs for OEC proteins have been iden- tified in the chloropla...Oxygen-evolving complex (OEC) protein is the original name for membrane-peripheral subunits of photosystem (PS) II. Recently, multiple isoforms and homologs for OEC proteins have been iden- tified in the chloroplast thylakoid lumen, indicating that functional diversification has occurred in the OEC family. Gene expression profiles suggest that the Arabidopsis OEC proteins are roughly categorized into three groups: the authentic OEC group, the stressresponsive group, and the group including proteins related to the chloroplast NAD(P)H dehydrogenase (NDH) complex involved in cyclic electron transport around PSI. Based on the above gene expression profiles, molecular functions of the OEC family proteins are discussed together with our current knowledge about their functions.展开更多
We investigated the antiproliferative activity of (-)-gossypol on the human prostate cancer cell line PC3 in vitro and in vivo to elucidate its potential molecular mechanisms. Cell growth and viability were evaluate...We investigated the antiproliferative activity of (-)-gossypol on the human prostate cancer cell line PC3 in vitro and in vivo to elucidate its potential molecular mechanisms. Cell growth and viability were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and cell apoptosis was detected by flow cytometry, terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) and electron microscopy. Expression of proliferating cell nuclear antigen (PCNA), Bcl-2, CD31, caspase-3 and caspase-8 in tumour tissue was determined by immunohistochemistry. The drug concentration that yielded 50% cell inhibition (IC50 value) was 4.74 μg mL-1. In the PC-3 tumour xenograft study, (-)-gossypol (〉 5 mg kg-1) given once a day for 7 days significantly inhibited tumour growth in a dose-dependent manner. Immunohistochemical analysis revealed that (-)-gossypol enhanced caspase-3 and caspase-8 expression and decreased the expression of PCNA, Bcl-2 and CD31 in tumour tissues. It suggested that cell apoptosis and inhibition of angiogenesis might contribute to the anticancer action of (-)-gossypol.展开更多
The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric an...The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.展开更多
在真空环境下,用采集板模拟离子作用将电子束从ECR中和器中引出,实验研究ECR中和器结构以及工作参数对引出电子束流和中和器性能的影响,从而确定最佳的ECR中和器结构和工作参数。实验结果表明:在最佳的ECR中和器结构组合条件下,气体流量...在真空环境下,用采集板模拟离子作用将电子束从ECR中和器中引出,实验研究ECR中和器结构以及工作参数对引出电子束流和中和器性能的影响,从而确定最佳的ECR中和器结构和工作参数。实验结果表明:在最佳的ECR中和器结构组合条件下,气体流量0.8 m L·min-1、电子束引出偏压88.6 V时,可以引出103.8 m A的束流,推进剂利用效率和电子损耗分别为1.278 9和194.573 W·A-1,能满足ECR离子源离子引出束流的需要。展开更多
Ordered metal oxides superstructures have attracted much more attention in the fields of fuel generation and environmental purification owing to their unique physiochemical characteristics such as large surface area, ...Ordered metal oxides superstructures have attracted much more attention in the fields of fuel generation and environmental purification owing to their unique physiochemical characteristics such as large surface area, fine pore structure, efficient electronic mobility, and good stability. Very recently, TiOmesocrystals(TMCs) having superstructures self-assembled by TiOnanoparticle building blocks, are of considerable interest in current research and application ranging from UV to visible light attributed to their efficient charge separation and superior photocatalytic activity. In this review, we describe the common procedures to prepare unique TMCs and overview of recent developments of TMCs during last 3 years, especially the structure-related or electronic-effected mechanism in photocatalytic reaction. Further, we introduce the characterization and fundamental properties of modified TMCs by the means of single-particle fluorescence microscopy for unraveling the charge transport and photocatalytic properties of individual TMCs and time-resolved diffuse reflectance spectroscopy(TDR) for monitoring the charge transfer dynamics. Finally, various aspects on TMCs are discussed for the future developments of energy and environmental fields.展开更多
A series of photoinduced palladium-catalyzed 1,3-diene-selective fluoroalkylamination derivatives was rationally synthesized based on diversity-oriented synthesis via cross coupling of 1,3-dienes,amines and fluoroalky...A series of photoinduced palladium-catalyzed 1,3-diene-selective fluoroalkylamination derivatives was rationally synthesized based on diversity-oriented synthesis via cross coupling of 1,3-dienes,amines and fluoroalkyl iodides.The reaction featured good function group tolerance and a broad substrate scope,which could be extended to the late-stage modification of bioactive molecules.Bactericidal activity of all the compounds against Xanthomonas oryzae pv.oryzae(Xoo)was evaluated.Among them,compound E14 showed significant activity against Xanthomonas oryzae pv.oryzae(Xoo)with half maximal effective concentration(EC50)value of 6.61μmol/mL.In pot experiments,the results showed that E14 could control rice bacterial blight with protective and curative efficiencies of 37.5%and 63.2%at 200μg/mL,respectively.Additionally,a plausible mechanism for antibacterial behavior of E14 was proposed by electron microscopy,flow cytometry,reactive oxygen species detection,and biofilm assay.In current work,it can promote the development of photoinduced palladium-catalyzed 1,3-diene-selective fluoroalkyl amination compounds as prospective antibacterial agent bearing an intriguing mode of action.展开更多
Rising atmospheric CO_(2)(carbon dioxide)concentrations and salinization are manifestations of climate change that affect plant growth and productivity.Species with an intermediate C_(3)-C_(4)type of photosynthesis li...Rising atmospheric CO_(2)(carbon dioxide)concentrations and salinization are manifestations of climate change that affect plant growth and productivity.Species with an intermediate C_(3)-C_(4)type of photosynthesis live in a wide range of precipitation,temperature,and soil quality,but are more often found in warm and dry habitats.One of the intermediate C_(3)-C_(4)photosynthetic type is C_(2)photosynthesis with a carbon concentration mechanism(CCM)that reassimilates CO_(2)released via photorespiration.However,the ecological significance under which C_(2)photosynthesis has advantages over C_(3)and C_(4)plants remains largely unexplored.Salt tolerance and functioning of CCM were studied in plants from two populations(P1 and P2)of Sedobassia sedoides(Pall.)Freitag&G.Kadereit Asch.species with C_(2)photosynthesis exposed to 4 d and 10 d salinity(200 mM NaCl)at ambient(785.7 mg/m^(3),aCO_(2)and elevated(1571.4 mg/m^(3),eCO_(2))CO_(2).On the fourth day of salinity,an increase in Na+content,activity catalase,and superoxide dismutase was observed in both populations.P2 plants showed an increase in proline content and a decrease in photosynthetic enzyme content:rubisco,phosphoenolpyruvate carboxylase(PEPC),and glycine decarboxylase(GDC),which indicated a weakening of C_(2)and C_(4)characteristics under salinity.Treatment under 10 d salinity led to an increased Na^(+)content and activity of cyclic electron flow around photosystem I(PSI CEF),a decreased content of K^(+)and GDC in both populations.P1 plants showed greater salt tolerance,which was assessed by the degree of reduction in photosynthetic enzyme content,PSI CEF activity,and changes in relative growth rate(RGR).Differences between populations were evident under the combination of eCO_(2)and salinity.Under long-term salinity and eCO_(2),more salt-tolerant P1 plants had a higher dry biomass(DW),which was positively correlated with PSI CEF activity.In less salt-tolerant P2 plants,DW correlated with transpiration and dark respiration.Thus,S.sedoides showed a high degre展开更多
Highly-efficient oxidation of 5-hydroxymethylfurtural(HMF) to 2,5-furandicarboxylic acid(FDCA) at low temperature with air as the oxidant is still challenging.Herein,inspired by the respirato ry electron transport cha...Highly-efficient oxidation of 5-hydroxymethylfurtural(HMF) to 2,5-furandicarboxylic acid(FDCA) at low temperature with air as the oxidant is still challenging.Herein,inspired by the respirato ry electron transport chain(ETC) of living cells mediated by electron carriers,we constructed artificial ETCs and transformed liquid flow fuel cells(LFFCs) to flexible reactors for efficient oxidation of HMF to produce FDCA under mild conditions.This LFFC reactor employed an electrodeposition modified nickel foam as an anode to promote HMF oxidation and(VO_(2))_(2)SO_(4) as a cathode electron carrier to facilitate the electron transfer to air.The reaction rate could be easily controlled by selecting the anode catalyst,adjusting the external loading and changing the cathodic electron carrier or oxidants.A maximal power density of 44.9 mW cm^(-2) at room temperature was achieved,while for FDCA production,short-circuit condition was preferred to achieve quick transfer of electrons.For a single batch operation with 0.1 M initial HMF,FDCA yield reached 97.1%.By fed-batch operation,FDCA concentration reached 144.5 g L^(-1) with a total yield of 96%.Ni^(2+)/Ni^(3+) redox couple was the active species mediating the electron transfer,while both experimental and DFT calculation results indicated that HMFCA pathway was the preferred reaction mechanism.展开更多
基金Heilongjiang Natural Science Foundation (G98L19-1)guided by Ministry of Health,China.98-2-269
文摘AIM To study the effect of a varyingconcentrations of arsenic trioxide on humanhepatoma cell line BEL-?402 cultured in vitro andits mechanism of action.METHODS The BEL-7402 cells were treatedwith arsenic trioxide(at the concentrations of0.5,1,2 μmol/L,respectively)for 4 successivedays.The cell growth and proliferation wereobserved by cell counting and cell-growth curve.Morphologic changes were studied withelectronmicroscopy.Flow cytometry was usedto assay celI-DNA distribution and the proteinexpression of Bcl-2 and Bax detected byimmunocytochemical method.RESULTS The cell growth was significantlyinhibited by varying concentrations of arsenictrioxide as revealed by cell counting and cell-growth curve,which was dose- and time-dependent.Arsenic trioxide treatment at 0.5,1and 2 μmol/L resulted in a sub-G1 cell peak,theapoptosis rate of the control group was 9.31%and that of 0.5 μmol/L arsenic trioxide 15.53%,no significant difference was seen between thetwo.The apoptosis rates of 1,2 μmol/L arsenictrioxide were 19.10% and 21.87% respectively,which were much higher(both P【0.05).Decrease of G<sub>0</sub>/G<sub>1</sub> phase cells and increase of Sphase cells were observed by flow cytometry,suggesting the inhibition effect of 0.5,1,2 μmol/L arsenic trioxide on BEL-7402 cell lay in the G<sub>0</sub>/G<sub>1</sub> phase.Morphologic changes such asintact cell membrane,nucleic condensation,apoptotic body formation were seen undertransmission electronmicrescopy,whereas the0.5 mol/L arsenic trioxide-treated BEL-7402cells showed decrease of nucleocytoplasmicratio,round nucleus,well-differentiatedorganelles in the cytoplasm.The processes andmicrovilli on the cell surface of the experimentalgroups under scanning electron microscopy weresignificantly decreased.High expressions ofBcl-2 and Bax were detected in 1 and 2 μmol/Larsenic trioxide-treated cells,these were 46%,87.33% and 83.08%,95.83% respectively,among which that of Bax was more significant.Arsenic trioxide treatment at 0.5 μmol/Lresulted in a higher ex
基金supported by the National Science Foundation Project(Grant No.40972209)Special Fund of State Public Institute for Basic Research(Grant No.IGCEA 1101)
文摘In this paper, we describe three strata at the distal part of the pyroclastic-flow from the Tianchi volcano in 1215 (±15) eruption. One of the strata with crosslayers that are different from typical pyroclastic-flow strata may come from a ground-surge. The grain-size and scanning electron microscopy (SEM) analysis was performed to study the origin of the pyroclastic-flow. Characteristics of grain-size distribution show that it is similar with the ash cloud. Through the SEM analyses, we found some quench structures with less damage on the surfaces of the vitric pumices. These phenomena indicate that there has been hydration in the transportation processes at the distal of pyroclastic-flow. It has partly changed the transportation mechanism of pyroclastic-flow, which transitions form dense flow to diluted flow. This paper develops a new distal pyroclastic-flow model in the Tianchi volcano that can be divided into three stages, i.e. the quench stage, expanding stage and depositing stage.
基金supported by a Grant-in Aid for Scientific Research on Priority Areas(grant no.17051016 to K.I.and F.S.)for Young Scientists(B)(grant no.18770032to K.I.)
文摘Oxygen-evolving complex (OEC) protein is the original name for membrane-peripheral subunits of photosystem (PS) II. Recently, multiple isoforms and homologs for OEC proteins have been iden- tified in the chloroplast thylakoid lumen, indicating that functional diversification has occurred in the OEC family. Gene expression profiles suggest that the Arabidopsis OEC proteins are roughly categorized into three groups: the authentic OEC group, the stressresponsive group, and the group including proteins related to the chloroplast NAD(P)H dehydrogenase (NDH) complex involved in cyclic electron transport around PSI. Based on the above gene expression profiles, molecular functions of the OEC family proteins are discussed together with our current knowledge about their functions.
基金This study was supported in part by grants from National Natural Science Foundation of China (No. 30570494 and No. 30772658). We thank Dr Xing- Bin Hu (The Second Department of Blood Transfusion, Xijing Hospital, Xi'an, China) for assisting writing this manuscript.
文摘We investigated the antiproliferative activity of (-)-gossypol on the human prostate cancer cell line PC3 in vitro and in vivo to elucidate its potential molecular mechanisms. Cell growth and viability were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and cell apoptosis was detected by flow cytometry, terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) and electron microscopy. Expression of proliferating cell nuclear antigen (PCNA), Bcl-2, CD31, caspase-3 and caspase-8 in tumour tissue was determined by immunohistochemistry. The drug concentration that yielded 50% cell inhibition (IC50 value) was 4.74 μg mL-1. In the PC-3 tumour xenograft study, (-)-gossypol (〉 5 mg kg-1) given once a day for 7 days significantly inhibited tumour growth in a dose-dependent manner. Immunohistochemical analysis revealed that (-)-gossypol enhanced caspase-3 and caspase-8 expression and decreased the expression of PCNA, Bcl-2 and CD31 in tumour tissues. It suggested that cell apoptosis and inhibition of angiogenesis might contribute to the anticancer action of (-)-gossypol.
文摘The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.
文摘在真空环境下,用采集板模拟离子作用将电子束从ECR中和器中引出,实验研究ECR中和器结构以及工作参数对引出电子束流和中和器性能的影响,从而确定最佳的ECR中和器结构和工作参数。实验结果表明:在最佳的ECR中和器结构组合条件下,气体流量0.8 m L·min-1、电子束引出偏压88.6 V时,可以引出103.8 m A的束流,推进剂利用效率和电子损耗分别为1.278 9和194.573 W·A-1,能满足ECR离子源离子引出束流的需要。
基金supported by a grant-in-aid for Scientific Research (Project 25220806 and others) from the Ministry of Education,Culture,Sports,Science and Technology (MEXT) of the Japanese Government
文摘Ordered metal oxides superstructures have attracted much more attention in the fields of fuel generation and environmental purification owing to their unique physiochemical characteristics such as large surface area, fine pore structure, efficient electronic mobility, and good stability. Very recently, TiOmesocrystals(TMCs) having superstructures self-assembled by TiOnanoparticle building blocks, are of considerable interest in current research and application ranging from UV to visible light attributed to their efficient charge separation and superior photocatalytic activity. In this review, we describe the common procedures to prepare unique TMCs and overview of recent developments of TMCs during last 3 years, especially the structure-related or electronic-effected mechanism in photocatalytic reaction. Further, we introduce the characterization and fundamental properties of modified TMCs by the means of single-particle fluorescence microscopy for unraveling the charge transport and photocatalytic properties of individual TMCs and time-resolved diffuse reflectance spectroscopy(TDR) for monitoring the charge transfer dynamics. Finally, various aspects on TMCs are discussed for the future developments of energy and environmental fields.
基金the National Natural Science Foundation of China(No.32072450)the National Science Fund for Distinguished Young Scholars of Guangdong Province(No.2021B1515020107)the International Science and Technology Cooperation Program in Guangdong(Nos.2020A0505100048 and 2022A0505050060).
文摘A series of photoinduced palladium-catalyzed 1,3-diene-selective fluoroalkylamination derivatives was rationally synthesized based on diversity-oriented synthesis via cross coupling of 1,3-dienes,amines and fluoroalkyl iodides.The reaction featured good function group tolerance and a broad substrate scope,which could be extended to the late-stage modification of bioactive molecules.Bactericidal activity of all the compounds against Xanthomonas oryzae pv.oryzae(Xoo)was evaluated.Among them,compound E14 showed significant activity against Xanthomonas oryzae pv.oryzae(Xoo)with half maximal effective concentration(EC50)value of 6.61μmol/mL.In pot experiments,the results showed that E14 could control rice bacterial blight with protective and curative efficiencies of 37.5%and 63.2%at 200μg/mL,respectively.Additionally,a plausible mechanism for antibacterial behavior of E14 was proposed by electron microscopy,flow cytometry,reactive oxygen species detection,and biofilm assay.In current work,it can promote the development of photoinduced palladium-catalyzed 1,3-diene-selective fluoroalkyl amination compounds as prospective antibacterial agent bearing an intriguing mode of action.
基金partially supported by the Science and Technology Research Partnership for Sustainable Development(SATREPS)in collaboration with the Japan Science and Technology Agency(JPMJSA2001)the state assignment of Ministry of Science and Higher Education of the Russian Federation(122042700044-6).
文摘Rising atmospheric CO_(2)(carbon dioxide)concentrations and salinization are manifestations of climate change that affect plant growth and productivity.Species with an intermediate C_(3)-C_(4)type of photosynthesis live in a wide range of precipitation,temperature,and soil quality,but are more often found in warm and dry habitats.One of the intermediate C_(3)-C_(4)photosynthetic type is C_(2)photosynthesis with a carbon concentration mechanism(CCM)that reassimilates CO_(2)released via photorespiration.However,the ecological significance under which C_(2)photosynthesis has advantages over C_(3)and C_(4)plants remains largely unexplored.Salt tolerance and functioning of CCM were studied in plants from two populations(P1 and P2)of Sedobassia sedoides(Pall.)Freitag&G.Kadereit Asch.species with C_(2)photosynthesis exposed to 4 d and 10 d salinity(200 mM NaCl)at ambient(785.7 mg/m^(3),aCO_(2)and elevated(1571.4 mg/m^(3),eCO_(2))CO_(2).On the fourth day of salinity,an increase in Na+content,activity catalase,and superoxide dismutase was observed in both populations.P2 plants showed an increase in proline content and a decrease in photosynthetic enzyme content:rubisco,phosphoenolpyruvate carboxylase(PEPC),and glycine decarboxylase(GDC),which indicated a weakening of C_(2)and C_(4)characteristics under salinity.Treatment under 10 d salinity led to an increased Na^(+)content and activity of cyclic electron flow around photosystem I(PSI CEF),a decreased content of K^(+)and GDC in both populations.P1 plants showed greater salt tolerance,which was assessed by the degree of reduction in photosynthetic enzyme content,PSI CEF activity,and changes in relative growth rate(RGR).Differences between populations were evident under the combination of eCO_(2)and salinity.Under long-term salinity and eCO_(2),more salt-tolerant P1 plants had a higher dry biomass(DW),which was positively correlated with PSI CEF activity.In less salt-tolerant P2 plants,DW correlated with transpiration and dark respiration.Thus,S.sedoides showed a high degre
基金supported by the National Key R&D Program of China(2022YFA2105900)the National Natural Science Foundation of China(22178197)。
文摘Highly-efficient oxidation of 5-hydroxymethylfurtural(HMF) to 2,5-furandicarboxylic acid(FDCA) at low temperature with air as the oxidant is still challenging.Herein,inspired by the respirato ry electron transport chain(ETC) of living cells mediated by electron carriers,we constructed artificial ETCs and transformed liquid flow fuel cells(LFFCs) to flexible reactors for efficient oxidation of HMF to produce FDCA under mild conditions.This LFFC reactor employed an electrodeposition modified nickel foam as an anode to promote HMF oxidation and(VO_(2))_(2)SO_(4) as a cathode electron carrier to facilitate the electron transfer to air.The reaction rate could be easily controlled by selecting the anode catalyst,adjusting the external loading and changing the cathodic electron carrier or oxidants.A maximal power density of 44.9 mW cm^(-2) at room temperature was achieved,while for FDCA production,short-circuit condition was preferred to achieve quick transfer of electrons.For a single batch operation with 0.1 M initial HMF,FDCA yield reached 97.1%.By fed-batch operation,FDCA concentration reached 144.5 g L^(-1) with a total yield of 96%.Ni^(2+)/Ni^(3+) redox couple was the active species mediating the electron transfer,while both experimental and DFT calculation results indicated that HMFCA pathway was the preferred reaction mechanism.