Large pulsed electron beam(LPEB) irradiation was employed as a surface treatment of magnesium(Mg)alloy AZ31B to enhance its corrosion and wear resistance. Selective evaporation of Mg induced by LPEB irradiation at an ...Large pulsed electron beam(LPEB) irradiation was employed as a surface treatment of magnesium(Mg)alloy AZ31B to enhance its corrosion and wear resistance. Selective evaporation of Mg induced by LPEB irradiation at an energy density of 5J/cm^2 for 40 cycles has led to the formation of an Al-enriched resolidified layer with nano-grained structure consisting of Mg3.1 Al0.9 metastable phase. The formation of such a re-solidified layer after LPEB irradiation has enabled a decrease in corrosion rate of Mg alloy AZ31B in 3.5% NaCl solution. Different equivalent electrical circuit models were proposed to account for the corrosion behavior of untreated Mg alloy AZ31B and those subjected to LPEB irradiation. A decrease in wear depth when compared to that of the untreated alloy suggests an increase in wear resistance of LPEB-irradiated Mg alloy AZ31B. Adhesive wear is the predominant mechanism of untreated Mg alloy AZ31B while abrasive wear mechanism dominates for LPEB-irradiated Mg alloy AZ31B.展开更多
An experimental investigation were performed on the effect of the impulse electron-beam irradiation upon microstruc-ture of the surface layer and on wear resistance of a cutting tool for sintered TiC/NiCr cermet. The ...An experimental investigation were performed on the effect of the impulse electron-beam irradiation upon microstruc-ture of the surface layer and on wear resistance of a cutting tool for sintered TiC/NiCr cermet. The results showed that the surface electron-beam treatment of the TiC/NiCr cermet is an efficient method for investigating the mi-crostructure and phase composition in the surface layer of the powder composite and there are optimal regimes of electron-beam treatment, which ensure a substantial increase in the resistance of the cermet to wear during cutting of metals.展开更多
The character of structural changes in the surface layer of titanium carbide (TiC) with Ni-Cr alloy binder was investigated theoretically and experimentally after electron-beam treatment of the material surface. The...The character of structural changes in the surface layer of titanium carbide (TiC) with Ni-Cr alloy binder was investigated theoretically and experimentally after electron-beam treatment of the material surface. The thermal influence of the electron-beam irradiation on the surface layer microstructure of the composite fine-grained material was mathematically analyzed. Quantitative estimations of the depth of the zone in microstructural phase transformations were carried out. The microstructure and concentration profile of Ti distribution in the metallic binder over the cross section of the surface layer with microstructural phase transformations after electron-pulse treatment of the hard metal surface were experimentally investigated.展开更多
This paper reports TiC–(Ni–Cr) metal ceramic alloy(ratio of components 50:50) with nanoscaled components formed in the surface layer and smoothly transformed into the initial inner structure throughout the mate...This paper reports TiC–(Ni–Cr) metal ceramic alloy(ratio of components 50:50) with nanoscaled components formed in the surface layer and smoothly transformed into the initial inner structure throughout the material under pulsed electron irradiation of the alloy surface. Principal changes in the surface layer are ascribed to the formation of gradient structure leading to the increase in wear resistance of the surface layer, drop of friction coefficient and improvement of specimen bending resistance when stressing on the irradiated surface side. The above changes of tribological and strength properties in the surface layer under pulsed electron irradiation become more apparent with increasing atomic mass of a plasma-forming inert gas.展开更多
To improve the microstructure and properties of the electron beam welded joints, the vacuum or furnace whole post weld heat treatment (FWPWHT) usually should be done on it. The electron beam local post weld heat treat...To improve the microstructure and properties of the electron beam welded joints, the vacuum or furnace whole post weld heat treatment (FWPWHT) usually should be done on it. The electron beam local post weld heat treatment (EBLPWHT) is a rather new heat treatment procedure that provides the advantages of high precision, flexibility and efficiency, energy saving and higher productivity. In this paper, the microstructure, mechanical properties, fracture toughness and fatigue properties of electron beam welded joints of 30CrMnSiNi2A steel in as-welded (AW) and EBLPWHT conditions have been investigated respectively. The results show that the microstructures of different zones of joints in as-welded condition are changed by EBLPWHT procedure, in which the welds from coarse needle martensite into lath-shaped martensite; the main structures of heat affected zones (HAZ) from lath-shaped martensite into lower bainite. The properties of welded joints can be improved by the EBLPWHT in some extent, especially the fracture toughness of the welds and the fatigue crack resistance of welded joints can be sufficiently improved. However, more appropriate heat treatment parameters of the EBLPWHT have to be studied in order to increase the mechanical properties of base metal near by the HAZ.展开更多
A three-dimensional finite-element model (FEM) used for calculating electron beam (EB) welding temperature and stresses fields of thin plates of BT20 titanium has been developed in which the nonlinear thermophysical a...A three-dimensional finite-element model (FEM) used for calculating electron beam (EB) welding temperature and stresses fields of thin plates of BT20 titanium has been developed in which the nonlinear thermophysical and thermo-mechanical properties of the material has been considered. The welding temperature field, the distributions of residual stresses in as-welded (AW) and electron beam local post-weld heat treatment (EBLPWHT) conditions have been successfully simulated. The results show that: (1) In the weld center, the maximum magnitude of residual tensile stresses of BT20 thin plates of Ti alloy is equal to 60%- 70% of its yield strength σs. (2) The residual tensile stresses in weld center can be even decreased after EBLPWHT and the longitudinal tensile stresses are decreased about 50% compared to joints in AW conditions. (3) The numerical calculating results of residual stresses by using FEM are basically in agreement with the experimental results. Combined with numerical calculating results, the effects of electron beam welding and EBLPWHT on the distribution of welding residual stresses in thin plates of BT20 have been analyzed in detail.展开更多
The effects of two post-weld heat treatment processes on the microstructure and fatigue properties of the electron beam welded joints of 30CrMnSiNi2A steel were studied. Electron beam local post-weld heat treatment (E...The effects of two post-weld heat treatment processes on the microstructure and fatigue properties of the electron beam welded joints of 30CrMnSiNi2A steel were studied. Electron beam local post-weld heat treatment (EBLPWHT), in a vacuum chamber, immediately after welding and a traditional furnace whole post-weld heat treatment (FWPWHT) were accepted. The experimental results show that, after EBLPWHT, the main microstructure of weld is changed from coarse acicular martensite into lath martensite, and base metal is changed from ferrite and perlite into upper bainite and residual austenite, however the microstructures of different zones of joints in FWPWHT conditions are tempered sorbite. The fatigue crack growth rate da/dN of welds and base metal are not obviously changed among EBLPWHT, FWPWHT test and as-welded (AW) test, as the mechanical properties of materials have a certain but not large effect on the da/dN of welded joints. The resistance to near threshold fatigue crack growth data of welded joints can be largely improved by EBLPWHT and it is related to microstructure and crack closure effect.展开更多
针对TC 4钛合金电子束焊接及焊后局部热处理过程,采用AN SY S非线性有限元程序,模拟了TC 4钛合金电子束焊态和焊后电子束局部热处理的实际焊接温度场以及焊接接头应力场的变化和残余应力的分布.主要研究了焊后电子束局部热处理工艺对焊...针对TC 4钛合金电子束焊接及焊后局部热处理过程,采用AN SY S非线性有限元程序,模拟了TC 4钛合金电子束焊态和焊后电子束局部热处理的实际焊接温度场以及焊接接头应力场的变化和残余应力的分布.主要研究了焊后电子束局部热处理工艺对焊接接头残余应力的影响规律.结果表明,焊后电子束局部热处理可以降低焊缝及近缝区的残余应力峰值,并可使应力重新分布,即应力峰值点向母材扩展.展开更多
基金supported financially by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (Nos. 2018R1A2B3007806 and 2017R1A5A1015311)the Development of High Power Density Electron Beam Micro-drilling Machine and Process for High Aspect-ratio Micro-hole Parts funded by Ministry of Trade, Industry and Energy (No. 10063367)
文摘Large pulsed electron beam(LPEB) irradiation was employed as a surface treatment of magnesium(Mg)alloy AZ31B to enhance its corrosion and wear resistance. Selective evaporation of Mg induced by LPEB irradiation at an energy density of 5J/cm^2 for 40 cycles has led to the formation of an Al-enriched resolidified layer with nano-grained structure consisting of Mg3.1 Al0.9 metastable phase. The formation of such a re-solidified layer after LPEB irradiation has enabled a decrease in corrosion rate of Mg alloy AZ31B in 3.5% NaCl solution. Different equivalent electrical circuit models were proposed to account for the corrosion behavior of untreated Mg alloy AZ31B and those subjected to LPEB irradiation. A decrease in wear depth when compared to that of the untreated alloy suggests an increase in wear resistance of LPEB-irradiated Mg alloy AZ31B. Adhesive wear is the predominant mechanism of untreated Mg alloy AZ31B while abrasive wear mechanism dominates for LPEB-irradiated Mg alloy AZ31B.
文摘An experimental investigation were performed on the effect of the impulse electron-beam irradiation upon microstruc-ture of the surface layer and on wear resistance of a cutting tool for sintered TiC/NiCr cermet. The results showed that the surface electron-beam treatment of the TiC/NiCr cermet is an efficient method for investigating the mi-crostructure and phase composition in the surface layer of the powder composite and there are optimal regimes of electron-beam treatment, which ensure a substantial increase in the resistance of the cermet to wear during cutting of metals.
文摘The character of structural changes in the surface layer of titanium carbide (TiC) with Ni-Cr alloy binder was investigated theoretically and experimentally after electron-beam treatment of the material surface. The thermal influence of the electron-beam irradiation on the surface layer microstructure of the composite fine-grained material was mathematically analyzed. Quantitative estimations of the depth of the zone in microstructural phase transformations were carried out. The microstructure and concentration profile of Ti distribution in the metallic binder over the cross section of the surface layer with microstructural phase transformations after electron-pulse treatment of the hard metal surface were experimentally investigated.
文摘This paper reports TiC–(Ni–Cr) metal ceramic alloy(ratio of components 50:50) with nanoscaled components formed in the surface layer and smoothly transformed into the initial inner structure throughout the material under pulsed electron irradiation of the alloy surface. Principal changes in the surface layer are ascribed to the formation of gradient structure leading to the increase in wear resistance of the surface layer, drop of friction coefficient and improvement of specimen bending resistance when stressing on the irradiated surface side. The above changes of tribological and strength properties in the surface layer under pulsed electron irradiation become more apparent with increasing atomic mass of a plasma-forming inert gas.
文摘To improve the microstructure and properties of the electron beam welded joints, the vacuum or furnace whole post weld heat treatment (FWPWHT) usually should be done on it. The electron beam local post weld heat treatment (EBLPWHT) is a rather new heat treatment procedure that provides the advantages of high precision, flexibility and efficiency, energy saving and higher productivity. In this paper, the microstructure, mechanical properties, fracture toughness and fatigue properties of electron beam welded joints of 30CrMnSiNi2A steel in as-welded (AW) and EBLPWHT conditions have been investigated respectively. The results show that the microstructures of different zones of joints in as-welded condition are changed by EBLPWHT procedure, in which the welds from coarse needle martensite into lath-shaped martensite; the main structures of heat affected zones (HAZ) from lath-shaped martensite into lower bainite. The properties of welded joints can be improved by the EBLPWHT in some extent, especially the fracture toughness of the welds and the fatigue crack resistance of welded joints can be sufficiently improved. However, more appropriate heat treatment parameters of the EBLPWHT have to be studied in order to increase the mechanical properties of base metal near by the HAZ.
文摘A three-dimensional finite-element model (FEM) used for calculating electron beam (EB) welding temperature and stresses fields of thin plates of BT20 titanium has been developed in which the nonlinear thermophysical and thermo-mechanical properties of the material has been considered. The welding temperature field, the distributions of residual stresses in as-welded (AW) and electron beam local post-weld heat treatment (EBLPWHT) conditions have been successfully simulated. The results show that: (1) In the weld center, the maximum magnitude of residual tensile stresses of BT20 thin plates of Ti alloy is equal to 60%- 70% of its yield strength σs. (2) The residual tensile stresses in weld center can be even decreased after EBLPWHT and the longitudinal tensile stresses are decreased about 50% compared to joints in AW conditions. (3) The numerical calculating results of residual stresses by using FEM are basically in agreement with the experimental results. Combined with numerical calculating results, the effects of electron beam welding and EBLPWHT on the distribution of welding residual stresses in thin plates of BT20 have been analyzed in detail.
基金thefoundationoftheNationalDefenseTechnologyKeyLaboratory (No .99JS5 0 .3 .2JW14 0 2 )
文摘The effects of two post-weld heat treatment processes on the microstructure and fatigue properties of the electron beam welded joints of 30CrMnSiNi2A steel were studied. Electron beam local post-weld heat treatment (EBLPWHT), in a vacuum chamber, immediately after welding and a traditional furnace whole post-weld heat treatment (FWPWHT) were accepted. The experimental results show that, after EBLPWHT, the main microstructure of weld is changed from coarse acicular martensite into lath martensite, and base metal is changed from ferrite and perlite into upper bainite and residual austenite, however the microstructures of different zones of joints in FWPWHT conditions are tempered sorbite. The fatigue crack growth rate da/dN of welds and base metal are not obviously changed among EBLPWHT, FWPWHT test and as-welded (AW) test, as the mechanical properties of materials have a certain but not large effect on the da/dN of welded joints. The resistance to near threshold fatigue crack growth data of welded joints can be largely improved by EBLPWHT and it is related to microstructure and crack closure effect.
文摘针对TC 4钛合金电子束焊接及焊后局部热处理过程,采用AN SY S非线性有限元程序,模拟了TC 4钛合金电子束焊态和焊后电子束局部热处理的实际焊接温度场以及焊接接头应力场的变化和残余应力的分布.主要研究了焊后电子束局部热处理工艺对焊接接头残余应力的影响规律.结果表明,焊后电子束局部热处理可以降低焊缝及近缝区的残余应力峰值,并可使应力重新分布,即应力峰值点向母材扩展.