With the continuous development of digital medicine,minimally invasive precision and safety have become the primary development trends in hepatobiliary surgery.Due to the specificity and complexity of hepatobiliary su...With the continuous development of digital medicine,minimally invasive precision and safety have become the primary development trends in hepatobiliary surgery.Due to the specificity and complexity of hepatobiliary surgery,traditional preoperative imaging techniques such as computed tomography and magnetic resonance imaging cannot meet the need for identification of fine anatomical regions.Imaging-based three-dimensional(3D)reconstruction,virtual simulation of surgery and 3D printing optimize the surgical plan through preoperative assessment,improving the controllability and safety of intraoperative operations,and in difficult-to-reach areas of the posterior and superior liver,assistive robots reproduce the surgeon’s natural movements with stable cameras,reducing natural vibrations.Electromagnetic navigation in abdominal surgery solves the problem of conventional surgery still relying on direct visual observation or preoperative image assessment.We summarize and compare these recent trends in digital medical solutions for the future development and refinement of digital medicine in hepatobiliary surgery.展开更多
The angular glint in the near field plays an important role on radar tracking errors. To predict it more efficiently for electrically large targets, a new method based on graphical electromagnetic computing (GRECO) ...The angular glint in the near field plays an important role on radar tracking errors. To predict it more efficiently for electrically large targets, a new method based on graphical electromagnetic computing (GRECO) is proposed. With the benefit of the graphic card, the GRECO prediction method is faster and more accurate than other methods. The proposed method at the first time considers the special case that the targets cannot be completely covered by radar beams, which makes the prediction of radar tracking errors more self-contained in practical circumstances. On the other hand, the process of the scattering center extraction is omitted, resulting in possible angular glint prediction in real time. Comparisons between the simulation results and the theoretical ones validate its correctness and value to academic research and engineering applications.展开更多
基金Supported by National Natural Science Foundation of China,No.82070638 and No.81770621and JSPS KAKENHI,No.JP18H02866.
文摘With the continuous development of digital medicine,minimally invasive precision and safety have become the primary development trends in hepatobiliary surgery.Due to the specificity and complexity of hepatobiliary surgery,traditional preoperative imaging techniques such as computed tomography and magnetic resonance imaging cannot meet the need for identification of fine anatomical regions.Imaging-based three-dimensional(3D)reconstruction,virtual simulation of surgery and 3D printing optimize the surgical plan through preoperative assessment,improving the controllability and safety of intraoperative operations,and in difficult-to-reach areas of the posterior and superior liver,assistive robots reproduce the surgeon’s natural movements with stable cameras,reducing natural vibrations.Electromagnetic navigation in abdominal surgery solves the problem of conventional surgery still relying on direct visual observation or preoperative image assessment.We summarize and compare these recent trends in digital medical solutions for the future development and refinement of digital medicine in hepatobiliary surgery.
基金supported by the National Natural Science Foundation of China (60871069)
文摘The angular glint in the near field plays an important role on radar tracking errors. To predict it more efficiently for electrically large targets, a new method based on graphical electromagnetic computing (GRECO) is proposed. With the benefit of the graphic card, the GRECO prediction method is faster and more accurate than other methods. The proposed method at the first time considers the special case that the targets cannot be completely covered by radar beams, which makes the prediction of radar tracking errors more self-contained in practical circumstances. On the other hand, the process of the scattering center extraction is omitted, resulting in possible angular glint prediction in real time. Comparisons between the simulation results and the theoretical ones validate its correctness and value to academic research and engineering applications.