针对电磁发射过程中产生的脉冲强磁场对发射包内电子器件产生较强干扰问题,采用COMSOL中PDE模块对电磁发射过程中的速度趋肤效应进行仿真计算,建立轨道炮的面电流分布模型和脉冲电流模型;采用趋肤效应理论分析电磁屏蔽原理,建立了屏蔽...针对电磁发射过程中产生的脉冲强磁场对发射包内电子器件产生较强干扰问题,采用COMSOL中PDE模块对电磁发射过程中的速度趋肤效应进行仿真计算,建立轨道炮的面电流分布模型和脉冲电流模型;采用趋肤效应理论分析电磁屏蔽原理,建立了屏蔽效能评估方法,并设计了一种屏蔽体模型。分别采用导电、导磁材料设计了单层、多层组合屏蔽体,用COMSOL中磁场模块计算离弹底不同距离处的强磁场屏蔽效果,得出在离电枢较近时,导电材料与导磁材料的屏蔽效能较低,屏蔽体距离电枢越远时,导电材料的屏蔽效能不变,导磁材料的屏蔽效能逐渐提高,距离电枢100 mm时屏蔽效能达到34 d B。轨道炮磁场的低频特性使得导电材料的屏蔽效能较低,高磁通密度使得导磁材料的屏蔽效能较低,得出弹丸内智能电子元器件应置于远离电枢的弹头。展开更多
文摘针对电磁发射过程中产生的脉冲强磁场对发射包内电子器件产生较强干扰问题,采用COMSOL中PDE模块对电磁发射过程中的速度趋肤效应进行仿真计算,建立轨道炮的面电流分布模型和脉冲电流模型;采用趋肤效应理论分析电磁屏蔽原理,建立了屏蔽效能评估方法,并设计了一种屏蔽体模型。分别采用导电、导磁材料设计了单层、多层组合屏蔽体,用COMSOL中磁场模块计算离弹底不同距离处的强磁场屏蔽效果,得出在离电枢较近时,导电材料与导磁材料的屏蔽效能较低,屏蔽体距离电枢越远时,导电材料的屏蔽效能不变,导磁材料的屏蔽效能逐渐提高,距离电枢100 mm时屏蔽效能达到34 d B。轨道炮磁场的低频特性使得导电材料的屏蔽效能较低,高磁通密度使得导磁材料的屏蔽效能较低,得出弹丸内智能电子元器件应置于远离电枢的弹头。