Water electrolysis is a sustainable approach for hydrogen production by using electricity from clean energy sources.However,both the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER)associated wit...Water electrolysis is a sustainable approach for hydrogen production by using electricity from clean energy sources.However,both the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER)associated with water electrolysis are kinetically sluggish,leading to low efficiency in corresponding electrolysis devices.In addition,current electrocatalysts that can catalyze both HER and OER to practical rates require noble metals such as platinum that are low in abundance and high in price,severely limiting commercialization.As a result,the development of high-performance and cost-effective non-noble metal electrocatalysts to replace noble ones has intensified.Based on this,this review will comprehensively present recent research in the design,synthesis,characterization and performance validation/optimization of non-noble metal HER electrocatalysts and analyze corresponding catalytic mechanisms.Moreover,several important types of non-noble metal electrocatalysts including zero-dimensional,one-dimensional,two-dimensional and three-dimensional materials are presented with an emphasis on morphology/structure,synergetic interaction between metal and support,catalytic property and HER activity/stability.Furthermore,existing technical challenges are summarized and corresponding research directions are proposed toward practical application.展开更多
This work mainly deals with the segregating behaviors of Sc and the growth of unique primary Al3Sc in AlSc alloys prepared by molten salt electrolysis. The alloys contain 0.23–1.38 wt%Sc where Sc segregation is obser...This work mainly deals with the segregating behaviors of Sc and the growth of unique primary Al3Sc in AlSc alloys prepared by molten salt electrolysis. The alloys contain 0.23–1.38 wt%Sc where Sc segregation is observed. It is found that a high current density and long electrolysis time are in favor of high Sc content, and so do the high temperature and the addition level of Sc2O3. Sc content at the edge of Al based alloy(average Sc content: 0.75 wt%) can be as high as 1.09 wt%, while it is merely 0.24 wt% at the central area. The cooling rates have a strong impact on the morphology and particle size of primary Al3Sc,but a weak influence on Sc segregation. The cusped cubic and dendritic primary Al3Sc can precipitate in the prepared Al-Sc alloys. In a slightly hypereutectic Al-0.67 wt%Sc alloy, a large and cusped dendrite grows from the edge into the center. The primary and secondary dendritic arms can be as long as 600 and 250 μm, respectively. The Sc segregating behaviors in Al-Sc alloys is due to the mechanism controlled by the limited diffusion rate of Sc in liquid Al. This can involve the establishment of a near spherical discharge interface between liquid Al and the electrolyte. The Sc rich layer near Al-molten salt interface may provide the potential primary nuclei and sufficient Sc atoms for the growth of large dendritic primary Al3Sc.展开更多
Energy-saving glycerol electrolysis with lower potential than water spitting endows a promising way for the concurrent production of value-added formate and high-purity hydrogen. However, there is still lack of effici...Energy-saving glycerol electrolysis with lower potential than water spitting endows a promising way for the concurrent production of value-added formate and high-purity hydrogen. However, there is still lack of efficient electrocatalysts at both anode and cathode for glycerol electrolysis. Herein, we report the activation of Ni site in NiV layered double hydroxide(LDH) by electrochemical and N_(2)/H_(2) plasma regulations for boosting the activity of glycerol oxidation reaction(GOR) and hydrogen evolution reaction(HER), respectively. Specifically, boosted GOR performance with a low overpotential(1.23 V at 10 mA·cm^(-2)) and a high Faradic efficiency(94%) is demonstrated by electrochemically regulated NiV LDH(ENiV LDH) with elevated valence state of Ni site. In situ Raman spectrum reveals the generation of Ni(Ⅲ) species by electrochemical regulation, and the highly active Ni(Ⅲ)can be regenerated with the process of electrochemical oxidation. Additionally, the possible reaction pathway is speculated based on the in situ Fourier transform infrared spectroscopy(FTIR) and high-performance liquid chromatography results. The plasma-regulated NiV LDH(PNiV LDH) with lower valence state of Ni site exhibits outstanding HER activity, displaying a low overpotential of 45 m V to deliver 10 mA·cm^(-2).When employing E-NiV LDH and P-NiV LDH as anode and cathode electrocatalyst, respectively, the assembled electrolyzer merely needs 1.25 V to achieve 10 m A·cm^(-2) for simultaneous production of formate and hydrogen, demonstrating remarkable 320 mV of lower potential than water electrolysis.展开更多
The ammonia electrolysis is a highly efficient and energy-saving method for ultra-pure hydrogen generation, which highly relies on electrocatalytic performance of electrocatalysts. In this work, high-quality platinum(...The ammonia electrolysis is a highly efficient and energy-saving method for ultra-pure hydrogen generation, which highly relies on electrocatalytic performance of electrocatalysts. In this work, high-quality platinum(Pt) nanocubes(Pt-NCs) with 4.5 nm size are achieved by facile hydrothermal synthesis. The physical morphology and structure of Pt-NCs are exhaustively characterized, revealing that Pt-NCs with special {100} facets have excellent uniformity, good dispersity and high crystallinity. Meanwhile, the electrocatalytic performance of Pt-NCs for ammonia electrolysis are carefully investigated in alkaline solutions, which display outstanding electroactivity and stability for both ammonia electrooxidation reaction(AEOR) and hydrogen evolution reaction(HER) in KOH solution. Furthermore, a symmetric Pt-NCs||Pt-NCs ammonia electrolyzer based on bifunctional Pt-NCs electrocatalyst is constructed, which only requires 0.68 V electrolysis voltage for hydrogen generation. Additionally, the symmetric Pt-NCs||Pt-NCs ammonia electrolyzer has excellent reversible switch capability for AEOR at anode and HER at cathode, showing outstanding alternating operation ability for ammonia electrolysis.展开更多
The development of highly efficient and durable oxygen evolution reaction(OER)catalysts for seawater electrolysis is of great importance for applications.Here,an amorphous FeMoO_(4) nanorod array on Ni foam is reporte...The development of highly efficient and durable oxygen evolution reaction(OER)catalysts for seawater electrolysis is of great importance for applications.Here,an amorphous FeMoO_(4) nanorod array on Ni foam is reported as a highly active OER electrocatalyst in alkaline seawater,requiring only overpotentials of 303 and 332 mV to achieve 100 and 300 mA·cm^(-2),respectively.Moreover,it shows strong long-term electrochemical durability for at least 50 h.展开更多
The oxygen evolution reaction(OER)plays an essential role in many energy storage and conversion technologies,but its high overpotential and sluggish kinetics seriously restrict its energy efficiency.The development of...The oxygen evolution reaction(OER)plays an essential role in many energy storage and conversion technologies,but its high overpotential and sluggish kinetics seriously restrict its energy efficiency.The development of efficient and inexpensive OER electrocatalysts remains a grand challenge.Twodimensional(2D)materials with their unique structure and electronic properties have wide application prospects for OER.In this review,first introducing OER electrocatalytic mechanisms and some crucial parameters for evaluating OER electrocatalysts,the latest progress in the design and construction of 2D materials for OER is systematically discussed,including layered double hydroxides,2D carbon materials,transition metal dichalcogenides,metal oxide and phosphide nanosheets,metal–organic frameworks,covalent-organic frameworks,and MXenes.Obviously,some effective design and optimization strategies to improve the electrocatalytic activity and durability of 2D materials such as OER electrocatalysts have been comprehensively generalized.The advantages and shortcomings of these 2D materials are analyzed in detail,and their practical applications are explained in depth,which is crucial for the rational design of high-performance OER electrocatalysts.Finally,the challenges and future development opportunities for 2D materials in enhanced OER are discussed.Our review is expected to provide clear guidance for the development of new low-cost 2D materials for advanced OER electrocatalysts.展开更多
The design and synthesis of high‐performance and low‐cost electrocatalysts for the hydrogen evolution reaction(HER),a key half‐reaction in water electrolysis,are essential.Owing to their modest hydrogen adsorption ...The design and synthesis of high‐performance and low‐cost electrocatalysts for the hydrogen evolution reaction(HER),a key half‐reaction in water electrolysis,are essential.Owing to their modest hydrogen adsorption energy,ruthenium(Ru)‐based nanomaterials are considered outstanding candidates to replace the expensive platinum(Pt)‐based HER electrocatalysts.In this study,we developed an adsorption‐pyrolysis method to construct nitrogen(N)‐doped graphene aerogel(N‐GA)‐supported ultrafine Ru nanocrystal(Ru‐NC)nanocomposites(Ru‐NCs/N‐GA).The particle size of the Ru‐NCs and the conductivity of the N‐GA substrate can be controlled by varying the pyrolysis temperature.Optimal experiments reveal revealed that 10 wt%Ru‐NCs/N‐GA nanocomposites require overpotentials of only 52 and 36 mV to achieve a current density of 10 mA cm^(−2) in 1 mol/L HClO4 and 1 mol/L KOH electrolytes for HER,respectively,which is comparable to 20 wt%Pt/C electrocatalyst.Benefiting from the ultrafine size and uniform dispersion of the Ru‐NCs,the synergy between Ru and the highly conductive substrate,and the anchoring effect of the N atom,the Ru‐NCs/N‐GA nanocomposites exhibit excellent activity and durability in the pH‐universal HER,thereby opening a new avenue for the production of commercial HER electrocatalysts.展开更多
Seawater splitting into hydrogen,a promising technology,is seriously limited by the durability and tolerance of electrocatalysts for chlorine ions in seawater at large current densities due to chloride oxidation and c...Seawater splitting into hydrogen,a promising technology,is seriously limited by the durability and tolerance of electrocatalysts for chlorine ions in seawater at large current densities due to chloride oxidation and corrosion.Here,we present a robust and weak-nucleophilicity nickel-iron hydroxide electrocatalyst with excellent selectivity for oxygen evolution and an inert response for chlorine ion oxidation which are key and highly desired for efficient seawater electrolysis.Such a weak-nucleophilicity electrocatalyst can well match with strong-nucleophilicity OH-compared with the weak-nucleophilicity Cl^(-),resultantly,the oxidation of OH-in electrolyte can be more easily achieved relative to chlorine ion oxidation,confirmed by ethylenediaminetetraacetic acid disodium probing test.Further,no strongly corrosive hypochlorite is produced when the operating voltage reaches about 2.1 V vs.RHE,a potential that is far beyond the thermodynamic potential of chlorine ion oxidatio n.This concept and approach to reasonably designing weaknucleophilicity electrocatalysts that can greatly avoid chlorine ion oxidation under alkaline seawater environments can push forward the seawater electrolysis technology and also accelerate the development of green hydrogen technique.展开更多
The properties of high entropy alloys(HEAs)depend on their phase structures and compositions.However,it is difficult to control the composition of the HEAs that contain highly volatile metals by the conventional arc m...The properties of high entropy alloys(HEAs)depend on their phase structures and compositions.However,it is difficult to control the composition of the HEAs that contain highly volatile metals by the conventional arc melting method.In this paper,homogeneous powdery face centered cubic(FCC)phase Fe_(0.5)CoNiCuZn_(x) HEAs were prepared by the electrolysis of metal oxides in molten Na_(2)CO_(3)-K_(2)CO_(3) using a stable Ni11Fe10Cu inert oxygen-evolution anode.The use of oxide precursors and relatively low synthetic temperature are beneficial to efficiently preparing HEAs that contain highly volatile elements such as Zn.Moreover,the microstructures and compositions of the electrolytic HEAs can be easily tailored by adjusting the components of oxide precursors,then further regulating its properties.Thus,the electrocatalytic activity of Fe_(0.5)Co NiCuZn_(x) HEAs towards oxygen evolution reactions(OER)was investigated in 1 M KOH.The results show that Zn promotes the OER activity of Fe_(0.5)CoNiCuZn_(x) HEAs,i.e.,the HEA(Zn_(0.8))shows the best OER activity exhibiting a low overpotential of 340 m V at 10 m A/cm^(2) and excellent stability of 24 h.Hence,molten salt electrolysis not only provides a green approach to prepare Fe_(0.5)CoNiCuZn_(x) HEAs but also offers an effective way to regulate the structure of the alloys and thereby optimizes the electrocatalytic activities for water electrolysis.展开更多
Direct seawater electrolysis for hydrogen production has been regarded as a viable route to utilize surplus renewable energy and address the climate crisis.However,the harsh electrochemical environment of seawater,par...Direct seawater electrolysis for hydrogen production has been regarded as a viable route to utilize surplus renewable energy and address the climate crisis.However,the harsh electrochemical environment of seawater,particularly the presence of aggressive Cl^(-),has been proven to be prone to parasitic chloride ion oxidation and corrosion reactions,thus restricting seawater electrolyzer lifetime.Herein,hierarchical structure(Ni,Fe)O(OH)@NiCoS nanorod arrays(NAs)catalysts with heterointerfaces and localized oxygen vacancies were synthesized at nickel foam substrates via the combination of hydrothermal and annealing methods to boost seawater dissociation.The hiera rchical nanostructure of NiCoS NAs enhanced electrode charge transfer rate and active surface area to accelerate oxygen evolution reaction(OER)and generated sulfate gradient layers to repulsive aggressive Cl^(-).The fabricated heterostructure and vacancies of(Ni,Fe)O(OH)tuned catalyst electronic structure into an electrophilic state to enhance the binding affinity of hydroxyl intermediates and facilitate the structural transformation into amorphousγ-NiFeOOH for promoting OER.Furthermore,through operando electrochemistry techniques,we found that theγ-NiFeOOH possessing an unsaturated coordination environment and lattice-oxygen-participated OER mechanism can minimize electrode Cl^(-)corrosion enabled by stabilizing the adsorption of OH*intermediates,making it one of the best OER catalysts in the seawater medium reported to date.Consequently,these catalysts can deliver current densities of 100 and 500 mA cm-2for boosting OER at minimal overpotentials of 245and 316 mV,respectively,and thus prevent chloride ion oxidation simultaneously.Impressively,a highly stable anion exchange membrane(AEM)seawater electrolyzer based on the non-noble metal heterostructure electrodes reached a record low degradation rate under 100μV h-1at constant industrial current densities of 400 and 600 mA cm-2over 300 h,which exhibits a promising future for the nonprecious and stable AE展开更多
Low carbon alcohol fuels electrolysis under ambient conditions is promising for green hydrogen generation instead of the traditional alcohol fuels steam reforming technique,and highly efficient bifunctional catalysts ...Low carbon alcohol fuels electrolysis under ambient conditions is promising for green hydrogen generation instead of the traditional alcohol fuels steam reforming technique,and highly efficient bifunctional catalysts for membrane electrode fabrication are required to drive the electrolysis reactions.Herein,the efficient catalytic promotion effect of a novel catalyst promoter,CoTe,on Pt is demonstrated for low carbon alcohol fuels of methanol and ethanol electrolysis for hydrogen generation.Experimental and density functional theory calculation results indicate that the optimized electronic structure of Pt–CoTe/C resulting from the synergetic effect between Pt and CoTe further regulates the adsorption energies of CO and H*that enhances the catalytic ability for methanol and ethanol electrolysis.Moreover,the good water activation ability of CoTe and the strong electronic effect of Pt and CoTe increased the tolerance ability to the poisoning species as demonstrated by the CO-stripping technique.The high catalytic kinetics and stability,as well as the promotion effect,were also carefully discussed.Specifically,71.9%and 75.5%of the initial peak current density was maintained after 1000 CV cycles in acid electrolyte for methanol and ethanol oxidation;and a low overpotential of 30 and 35 mV was required to drive the hydrogen evolution reaction in methanol and ethanol solution at the current density of 10 mA cm^(-2).In the two-electrode system for alcohol fuels electrolysis,using the optimal Pt–CoTe/C catalyst as bi-functional catalysts,the cell potential of 0.66 V(0.67 V)was required to achieve 10 mA cm^(-2) for methanol(ethanol)electrolysis,much smaller than that of water electrolysis(1.76 V).The current study offers a novel platform for hydrogen generation via low carbon alcohol fuel electrolysis,and the result is helpful to the catalysis mechanism understanding of Pt assisted by the novel promoter.展开更多
Earth-abundant seawater resource has become an attractive candidate to produce hydrogen from electrolysis,which is of great significance to realize hydrogen economy and carbon neutrality.Nonetheless,developing highly ...Earth-abundant seawater resource has become an attractive candidate to produce hydrogen from electrolysis,which is of great significance to realize hydrogen economy and carbon neutrality.Nonetheless,developing highly active and stable electrocatalysts to meet the needs of highly effective seawater splitting is still challenging for the sluggish oxygen evolution dynamics and the existed competitive reaction of chlorine evolution reaction(CER).To this end,some newly-developed electrocatalysts with superior performance,such as noble metals,alloy,transition metals,oxides,carbides,nitrides,phosphides,and so on,have been synthesized for the seawater splitting in recent years.This review starts from the historical background and fundamental mechanisms,and summarizes the most recent progress in the development of seawater electrolysis technologies.Some existing issues in the process of seawater electrolysis are enumerated and the corresponded solutions are presented.The future of hydrogen production from seawater electrolysis,especially the design and synthesis of novel catalysts for seawater electrolysis,is prospected.展开更多
基金We acknowledge the financial support from the National Natural Science Foundation of China(Grant No.21205030,2198073 and NSFC−U1903217)the Key Project of Hubei Provincial Education Department(D20171001)+1 种基金the Key Laboratory of Regional Development and Environmental Response in Hubei Province(2019(0A)003)the Hubei Key Laboratory for Processing and Application of Catalytic Materials(201829303).
文摘Water electrolysis is a sustainable approach for hydrogen production by using electricity from clean energy sources.However,both the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER)associated with water electrolysis are kinetically sluggish,leading to low efficiency in corresponding electrolysis devices.In addition,current electrocatalysts that can catalyze both HER and OER to practical rates require noble metals such as platinum that are low in abundance and high in price,severely limiting commercialization.As a result,the development of high-performance and cost-effective non-noble metal electrocatalysts to replace noble ones has intensified.Based on this,this review will comprehensively present recent research in the design,synthesis,characterization and performance validation/optimization of non-noble metal HER electrocatalysts and analyze corresponding catalytic mechanisms.Moreover,several important types of non-noble metal electrocatalysts including zero-dimensional,one-dimensional,two-dimensional and three-dimensional materials are presented with an emphasis on morphology/structure,synergetic interaction between metal and support,catalytic property and HER activity/stability.Furthermore,existing technical challenges are summarized and corresponding research directions are proposed toward practical application.
基金financial support of the project from the Beijing Natural Science Foundation (2184110)the National Natural Science Foundation of China (Nos. 51434005, 51704020 and 51874035)the Fundamental Research Funds for Central Universities of China (No. FRF-TP-17-035A1)
文摘This work mainly deals with the segregating behaviors of Sc and the growth of unique primary Al3Sc in AlSc alloys prepared by molten salt electrolysis. The alloys contain 0.23–1.38 wt%Sc where Sc segregation is observed. It is found that a high current density and long electrolysis time are in favor of high Sc content, and so do the high temperature and the addition level of Sc2O3. Sc content at the edge of Al based alloy(average Sc content: 0.75 wt%) can be as high as 1.09 wt%, while it is merely 0.24 wt% at the central area. The cooling rates have a strong impact on the morphology and particle size of primary Al3Sc,but a weak influence on Sc segregation. The cusped cubic and dendritic primary Al3Sc can precipitate in the prepared Al-Sc alloys. In a slightly hypereutectic Al-0.67 wt%Sc alloy, a large and cusped dendrite grows from the edge into the center. The primary and secondary dendritic arms can be as long as 600 and 250 μm, respectively. The Sc segregating behaviors in Al-Sc alloys is due to the mechanism controlled by the limited diffusion rate of Sc in liquid Al. This can involve the establishment of a near spherical discharge interface between liquid Al and the electrolyte. The Sc rich layer near Al-molten salt interface may provide the potential primary nuclei and sufficient Sc atoms for the growth of large dendritic primary Al3Sc.
基金the National Science Foundation of China(No.12075002)the Outstanding Youth Fund of Anhui Province(No.2008085J21)+1 种基金Anhui Provincial Supporting Program for Excellent Young Talents in Universities(No.gxyqZD2019005)the Innovation and Entrepreneurship Project of Overseas Returnees in Anhui Province(No.2019LCX018)。
文摘Energy-saving glycerol electrolysis with lower potential than water spitting endows a promising way for the concurrent production of value-added formate and high-purity hydrogen. However, there is still lack of efficient electrocatalysts at both anode and cathode for glycerol electrolysis. Herein, we report the activation of Ni site in NiV layered double hydroxide(LDH) by electrochemical and N_(2)/H_(2) plasma regulations for boosting the activity of glycerol oxidation reaction(GOR) and hydrogen evolution reaction(HER), respectively. Specifically, boosted GOR performance with a low overpotential(1.23 V at 10 mA·cm^(-2)) and a high Faradic efficiency(94%) is demonstrated by electrochemically regulated NiV LDH(ENiV LDH) with elevated valence state of Ni site. In situ Raman spectrum reveals the generation of Ni(Ⅲ) species by electrochemical regulation, and the highly active Ni(Ⅲ)can be regenerated with the process of electrochemical oxidation. Additionally, the possible reaction pathway is speculated based on the in situ Fourier transform infrared spectroscopy(FTIR) and high-performance liquid chromatography results. The plasma-regulated NiV LDH(PNiV LDH) with lower valence state of Ni site exhibits outstanding HER activity, displaying a low overpotential of 45 m V to deliver 10 mA·cm^(-2).When employing E-NiV LDH and P-NiV LDH as anode and cathode electrocatalyst, respectively, the assembled electrolyzer merely needs 1.25 V to achieve 10 m A·cm^(-2) for simultaneous production of formate and hydrogen, demonstrating remarkable 320 mV of lower potential than water electrolysis.
基金sponsored by the National Natural Science Foundation of China (21875133 and 51873100)the Fundamental Research Funds for the Central Universities (GK201901002 and GK201902014)the 111 Project (B14041)。
文摘The ammonia electrolysis is a highly efficient and energy-saving method for ultra-pure hydrogen generation, which highly relies on electrocatalytic performance of electrocatalysts. In this work, high-quality platinum(Pt) nanocubes(Pt-NCs) with 4.5 nm size are achieved by facile hydrothermal synthesis. The physical morphology and structure of Pt-NCs are exhaustively characterized, revealing that Pt-NCs with special {100} facets have excellent uniformity, good dispersity and high crystallinity. Meanwhile, the electrocatalytic performance of Pt-NCs for ammonia electrolysis are carefully investigated in alkaline solutions, which display outstanding electroactivity and stability for both ammonia electrooxidation reaction(AEOR) and hydrogen evolution reaction(HER) in KOH solution. Furthermore, a symmetric Pt-NCs||Pt-NCs ammonia electrolyzer based on bifunctional Pt-NCs electrocatalyst is constructed, which only requires 0.68 V electrolysis voltage for hydrogen generation. Additionally, the symmetric Pt-NCs||Pt-NCs ammonia electrolyzer has excellent reversible switch capability for AEOR at anode and HER at cathode, showing outstanding alternating operation ability for ammonia electrolysis.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding support through large group Research Project(No.RGP2/257/44).
文摘The development of highly efficient and durable oxygen evolution reaction(OER)catalysts for seawater electrolysis is of great importance for applications.Here,an amorphous FeMoO_(4) nanorod array on Ni foam is reported as a highly active OER electrocatalyst in alkaline seawater,requiring only overpotentials of 303 and 332 mV to achieve 100 and 300 mA·cm^(-2),respectively.Moreover,it shows strong long-term electrochemical durability for at least 50 h.
基金the Youth Talents Program of China,the Key Research and Development Projects in Shaanxi Province(grant no.2021GXLH-Z-072)the State Key Laboratory of Power System and Generation Equipment(grant no.SKLD21KM07)the National Natural Science Foundation of China-NSAF Joint Fund(CN)(grant no.U2230113).
文摘The oxygen evolution reaction(OER)plays an essential role in many energy storage and conversion technologies,but its high overpotential and sluggish kinetics seriously restrict its energy efficiency.The development of efficient and inexpensive OER electrocatalysts remains a grand challenge.Twodimensional(2D)materials with their unique structure and electronic properties have wide application prospects for OER.In this review,first introducing OER electrocatalytic mechanisms and some crucial parameters for evaluating OER electrocatalysts,the latest progress in the design and construction of 2D materials for OER is systematically discussed,including layered double hydroxides,2D carbon materials,transition metal dichalcogenides,metal oxide and phosphide nanosheets,metal–organic frameworks,covalent-organic frameworks,and MXenes.Obviously,some effective design and optimization strategies to improve the electrocatalytic activity and durability of 2D materials such as OER electrocatalysts have been comprehensively generalized.The advantages and shortcomings of these 2D materials are analyzed in detail,and their practical applications are explained in depth,which is crucial for the rational design of high-performance OER electrocatalysts.Finally,the challenges and future development opportunities for 2D materials in enhanced OER are discussed.Our review is expected to provide clear guidance for the development of new low-cost 2D materials for advanced OER electrocatalysts.
文摘The design and synthesis of high‐performance and low‐cost electrocatalysts for the hydrogen evolution reaction(HER),a key half‐reaction in water electrolysis,are essential.Owing to their modest hydrogen adsorption energy,ruthenium(Ru)‐based nanomaterials are considered outstanding candidates to replace the expensive platinum(Pt)‐based HER electrocatalysts.In this study,we developed an adsorption‐pyrolysis method to construct nitrogen(N)‐doped graphene aerogel(N‐GA)‐supported ultrafine Ru nanocrystal(Ru‐NC)nanocomposites(Ru‐NCs/N‐GA).The particle size of the Ru‐NCs and the conductivity of the N‐GA substrate can be controlled by varying the pyrolysis temperature.Optimal experiments reveal revealed that 10 wt%Ru‐NCs/N‐GA nanocomposites require overpotentials of only 52 and 36 mV to achieve a current density of 10 mA cm^(−2) in 1 mol/L HClO4 and 1 mol/L KOH electrolytes for HER,respectively,which is comparable to 20 wt%Pt/C electrocatalyst.Benefiting from the ultrafine size and uniform dispersion of the Ru‐NCs,the synergy between Ru and the highly conductive substrate,and the anchoring effect of the N atom,the Ru‐NCs/N‐GA nanocomposites exhibit excellent activity and durability in the pH‐universal HER,thereby opening a new avenue for the production of commercial HER electrocatalysts.
基金supported by the National Natural Science Foundation of China(NSFC,No.22078052)the Fundamental Research Funds for the Central Universities(DUT22ZD207,DUT22LAB612)。
文摘Seawater splitting into hydrogen,a promising technology,is seriously limited by the durability and tolerance of electrocatalysts for chlorine ions in seawater at large current densities due to chloride oxidation and corrosion.Here,we present a robust and weak-nucleophilicity nickel-iron hydroxide electrocatalyst with excellent selectivity for oxygen evolution and an inert response for chlorine ion oxidation which are key and highly desired for efficient seawater electrolysis.Such a weak-nucleophilicity electrocatalyst can well match with strong-nucleophilicity OH-compared with the weak-nucleophilicity Cl^(-),resultantly,the oxidation of OH-in electrolyte can be more easily achieved relative to chlorine ion oxidation,confirmed by ethylenediaminetetraacetic acid disodium probing test.Further,no strongly corrosive hypochlorite is produced when the operating voltage reaches about 2.1 V vs.RHE,a potential that is far beyond the thermodynamic potential of chlorine ion oxidatio n.This concept and approach to reasonably designing weaknucleophilicity electrocatalysts that can greatly avoid chlorine ion oxidation under alkaline seawater environments can push forward the seawater electrolysis technology and also accelerate the development of green hydrogen technique.
基金supported by the National Natural Science Foundation of China(Nos.51874211,52031008)the Fundamental Research Funds for the Central Universities(No.2042020kf0219)。
文摘The properties of high entropy alloys(HEAs)depend on their phase structures and compositions.However,it is difficult to control the composition of the HEAs that contain highly volatile metals by the conventional arc melting method.In this paper,homogeneous powdery face centered cubic(FCC)phase Fe_(0.5)CoNiCuZn_(x) HEAs were prepared by the electrolysis of metal oxides in molten Na_(2)CO_(3)-K_(2)CO_(3) using a stable Ni11Fe10Cu inert oxygen-evolution anode.The use of oxide precursors and relatively low synthetic temperature are beneficial to efficiently preparing HEAs that contain highly volatile elements such as Zn.Moreover,the microstructures and compositions of the electrolytic HEAs can be easily tailored by adjusting the components of oxide precursors,then further regulating its properties.Thus,the electrocatalytic activity of Fe_(0.5)Co NiCuZn_(x) HEAs towards oxygen evolution reactions(OER)was investigated in 1 M KOH.The results show that Zn promotes the OER activity of Fe_(0.5)CoNiCuZn_(x) HEAs,i.e.,the HEA(Zn_(0.8))shows the best OER activity exhibiting a low overpotential of 340 m V at 10 m A/cm^(2) and excellent stability of 24 h.Hence,molten salt electrolysis not only provides a green approach to prepare Fe_(0.5)CoNiCuZn_(x) HEAs but also offers an effective way to regulate the structure of the alloys and thereby optimizes the electrocatalytic activities for water electrolysis.
基金supported by the National Key Research and Development Program of China(2022YFB4002100)the Key Program of the National Natural Science Foundation of China(22090032,22090030)。
文摘Direct seawater electrolysis for hydrogen production has been regarded as a viable route to utilize surplus renewable energy and address the climate crisis.However,the harsh electrochemical environment of seawater,particularly the presence of aggressive Cl^(-),has been proven to be prone to parasitic chloride ion oxidation and corrosion reactions,thus restricting seawater electrolyzer lifetime.Herein,hierarchical structure(Ni,Fe)O(OH)@NiCoS nanorod arrays(NAs)catalysts with heterointerfaces and localized oxygen vacancies were synthesized at nickel foam substrates via the combination of hydrothermal and annealing methods to boost seawater dissociation.The hiera rchical nanostructure of NiCoS NAs enhanced electrode charge transfer rate and active surface area to accelerate oxygen evolution reaction(OER)and generated sulfate gradient layers to repulsive aggressive Cl^(-).The fabricated heterostructure and vacancies of(Ni,Fe)O(OH)tuned catalyst electronic structure into an electrophilic state to enhance the binding affinity of hydroxyl intermediates and facilitate the structural transformation into amorphousγ-NiFeOOH for promoting OER.Furthermore,through operando electrochemistry techniques,we found that theγ-NiFeOOH possessing an unsaturated coordination environment and lattice-oxygen-participated OER mechanism can minimize electrode Cl^(-)corrosion enabled by stabilizing the adsorption of OH*intermediates,making it one of the best OER catalysts in the seawater medium reported to date.Consequently,these catalysts can deliver current densities of 100 and 500 mA cm-2for boosting OER at minimal overpotentials of 245and 316 mV,respectively,and thus prevent chloride ion oxidation simultaneously.Impressively,a highly stable anion exchange membrane(AEM)seawater electrolyzer based on the non-noble metal heterostructure electrodes reached a record low degradation rate under 100μV h-1at constant industrial current densities of 400 and 600 mA cm-2over 300 h,which exhibits a promising future for the nonprecious and stable AE
基金supported by the National Natural Science Foundation of China(No.21972124,22102105)a project funded by the Priority Academic Program Development of Jiangsu Higher Education InstitutionL.Feng also thanks the support of the Six Talent Peaks Project of Jiangsu Province(XCL-070-2018).
文摘Low carbon alcohol fuels electrolysis under ambient conditions is promising for green hydrogen generation instead of the traditional alcohol fuels steam reforming technique,and highly efficient bifunctional catalysts for membrane electrode fabrication are required to drive the electrolysis reactions.Herein,the efficient catalytic promotion effect of a novel catalyst promoter,CoTe,on Pt is demonstrated for low carbon alcohol fuels of methanol and ethanol electrolysis for hydrogen generation.Experimental and density functional theory calculation results indicate that the optimized electronic structure of Pt–CoTe/C resulting from the synergetic effect between Pt and CoTe further regulates the adsorption energies of CO and H*that enhances the catalytic ability for methanol and ethanol electrolysis.Moreover,the good water activation ability of CoTe and the strong electronic effect of Pt and CoTe increased the tolerance ability to the poisoning species as demonstrated by the CO-stripping technique.The high catalytic kinetics and stability,as well as the promotion effect,were also carefully discussed.Specifically,71.9%and 75.5%of the initial peak current density was maintained after 1000 CV cycles in acid electrolyte for methanol and ethanol oxidation;and a low overpotential of 30 and 35 mV was required to drive the hydrogen evolution reaction in methanol and ethanol solution at the current density of 10 mA cm^(-2).In the two-electrode system for alcohol fuels electrolysis,using the optimal Pt–CoTe/C catalyst as bi-functional catalysts,the cell potential of 0.66 V(0.67 V)was required to achieve 10 mA cm^(-2) for methanol(ethanol)electrolysis,much smaller than that of water electrolysis(1.76 V).The current study offers a novel platform for hydrogen generation via low carbon alcohol fuel electrolysis,and the result is helpful to the catalysis mechanism understanding of Pt assisted by the novel promoter.
基金supported by ZiQoo Chemical Co.Ltd.,Japan,and Hydrogen Energy Systems Society of Japan.Feng and Chen gratefully acknowledge the State Scholarship Fund of China Scholarship Council,China.
文摘Earth-abundant seawater resource has become an attractive candidate to produce hydrogen from electrolysis,which is of great significance to realize hydrogen economy and carbon neutrality.Nonetheless,developing highly active and stable electrocatalysts to meet the needs of highly effective seawater splitting is still challenging for the sluggish oxygen evolution dynamics and the existed competitive reaction of chlorine evolution reaction(CER).To this end,some newly-developed electrocatalysts with superior performance,such as noble metals,alloy,transition metals,oxides,carbides,nitrides,phosphides,and so on,have been synthesized for the seawater splitting in recent years.This review starts from the historical background and fundamental mechanisms,and summarizes the most recent progress in the development of seawater electrolysis technologies.Some existing issues in the process of seawater electrolysis are enumerated and the corresponded solutions are presented.The future of hydrogen production from seawater electrolysis,especially the design and synthesis of novel catalysts for seawater electrolysis,is prospected.