Microstructure features of 12 MnNiVR pressure vessel steel welded joint deposited by the high heat input electrogas welding have been systematically investigated. It is revealed that the welded joint is featured by a ...Microstructure features of 12 MnNiVR pressure vessel steel welded joint deposited by the high heat input electrogas welding have been systematically investigated. It is revealed that the welded joint is featured by a heterogeneous juxtaposition. The coarse grained heat-affected zone(CGHAZ) primarily consists of lath bainites and minor granular bainites. The fine grained heat-affected zone(FGHAZ) is dominated by polygonal ferrites, pearlites, and fine cementite particles. Moreover, electron backscatter diffraction results further demonstrate that the CGHAZ is populated by coarse prior austenite grains(PAGs) with high frequency(61.3%) of low angle grain boundaries(LAGBs). On the other hand, the FGHAZ is filled with fine PAGs with a lower frequency(19.6%) of LAGBs. Such microstructural differences may likely contribute to differed mechanical properties for samples tested at designed positions.展开更多
In this paper, microstructure and mechanical properties of welding metals in 610 MPa high strength low alloy (HSLA) were studied after high-heat-input welding. Both the base material and the weld joint proved excell...In this paper, microstructure and mechanical properties of welding metals in 610 MPa high strength low alloy (HSLA) were studied after high-heat-input welding. Both the base material and the weld joint proved excellent strength and toughness by vibratory electrogas arc (VEGA) welding under 90 to 100 kJ/cm heatinput. The heat-affected zone (HAZ) was comprised of fine-grain zone (FGZ) and coarse-grain zone (CGZ), which characterizes fine granular structure and lathing-bainite substructure, It has found that large quantity of dispersed TiN and M23E6 precipitates restrain structure growing in HAZ and strengthen the weldment together with dislocations in the welded joint.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 51622401, 51628402, 51861145312 and 51861130361)the National Key Research and Development Program of China (2016YFB0300602)+3 种基金the Research Fund for Central Universities (No. N172502004)State Key Laboratory of Solidification Processing, Northwestern Polytechnical University (No. SKLSP201805)the Global Talents Recruitment Program endowed by the Chinese Governmentsupport from Jiangyin Xingcheng Special Steel Works Co., Ltd.
文摘Microstructure features of 12 MnNiVR pressure vessel steel welded joint deposited by the high heat input electrogas welding have been systematically investigated. It is revealed that the welded joint is featured by a heterogeneous juxtaposition. The coarse grained heat-affected zone(CGHAZ) primarily consists of lath bainites and minor granular bainites. The fine grained heat-affected zone(FGHAZ) is dominated by polygonal ferrites, pearlites, and fine cementite particles. Moreover, electron backscatter diffraction results further demonstrate that the CGHAZ is populated by coarse prior austenite grains(PAGs) with high frequency(61.3%) of low angle grain boundaries(LAGBs). On the other hand, the FGHAZ is filled with fine PAGs with a lower frequency(19.6%) of LAGBs. Such microstructural differences may likely contribute to differed mechanical properties for samples tested at designed positions.
文摘In this paper, microstructure and mechanical properties of welding metals in 610 MPa high strength low alloy (HSLA) were studied after high-heat-input welding. Both the base material and the weld joint proved excellent strength and toughness by vibratory electrogas arc (VEGA) welding under 90 to 100 kJ/cm heatinput. The heat-affected zone (HAZ) was comprised of fine-grain zone (FGZ) and coarse-grain zone (CGZ), which characterizes fine granular structure and lathing-bainite substructure, It has found that large quantity of dispersed TiN and M23E6 precipitates restrain structure growing in HAZ and strengthen the weldment together with dislocations in the welded joint.