A novel polysilicon-assisted silicon-controlled rectifier (SCR) is presented and analyzed in this paper, which is fabricated in HHNEC's 0.18μm EEPROM process. The polysilicon-assisted SCRs take advantage of polysi...A novel polysilicon-assisted silicon-controlled rectifier (SCR) is presented and analyzed in this paper, which is fabricated in HHNEC's 0.18μm EEPROM process. The polysilicon-assisted SCRs take advantage of polysilicon layer to help bypass electro-static discharge (E S D) current without occupying extra layout area. TLP current-voltage (I-V) measurement results show that given the same layout areas, robustness performance of polysilicon-assisted SCRs can be improved to 3 times of conventional MLSCR's. Moreover, one-finger such polysilicon-assisted SCRs, which occupy only 947 [3mz layout area, can undergo 7-kV HBM ESD stress. Results further demonstrate that the S-type I-V characteristics of polysilicon-assisted SCRs are adjustable to different operating conditions by changing the device dimensions. Compared with traditional SCRs, this new SCR can bypass more ESD currents and consumes smaller IC area.展开更多
摄像头模组主要由镜头、滤色片、音圈马达、马达驱动、图像传感器等部件构成。图像传感器和音圈马达驱动都是CMOS半导体器件,对ESD(Electro-Static Discharge)非常敏感。本文的主要内容包括以下几个方面:(1)摄像头模组的ESD保护设计,主...摄像头模组主要由镜头、滤色片、音圈马达、马达驱动、图像传感器等部件构成。图像传感器和音圈马达驱动都是CMOS半导体器件,对ESD(Electro-Static Discharge)非常敏感。本文的主要内容包括以下几个方面:(1)摄像头模组的ESD保护设计,主要从结构设计和电子设计两个方面来阐述,结构设计时主要对ESD敏感区的保护;电子设计时主要是对CMOS芯片的接口引脚进行保护。(2)人体模型的研究,主要讨论HBM(Human Body Model)的仿真模型的创建。(3)静电释放的波形仿真和实验,主要讨论测试环境的建立,并对比目标和实际波形。展开更多
By using the pulsed laser single event effect facility and electro-static discharge (ESD) test system, the characteristics of the "high current", relation with external stimulus and relevance to impacted modes of ...By using the pulsed laser single event effect facility and electro-static discharge (ESD) test system, the characteristics of the "high current", relation with external stimulus and relevance to impacted modes of single event latch-up (SEL) and transient-induced latch-up (TLU) are studied, respectively, for a 12-bit complementary metal--oxide semiconductor (CMOS) analog-to-digital converter. Furthermore, the sameness and difference in physical mechanism between "high current" induced by SEL and that by TLU are disclosed in this paper. The results show that the minority carrier diffusion in the PNPN structure of the CMOS device which initiates the active parasitic NPN and PNP transistors is the common reason for the "high current" induced by SEL and for that by TLU, However, for SEL, the minority carder diffusion is induced by the ionizing radiation, and an underdamped sinusoidal voltage on the supply node (the ground node) is the cause of the minority carrier diffusion for TLU.展开更多
A new thyristor is proposed and realized in the foundry's 0.18-μm CMOS process for electrostatic dis-charge(ESD) protection.Without extra mask layers or process steps, the new ultra-low-voltage-trigger thyristor(...A new thyristor is proposed and realized in the foundry's 0.18-μm CMOS process for electrostatic dis-charge(ESD) protection.Without extra mask layers or process steps, the new ultra-low-voltage-trigger thyristor(ULVT thyristor) has a trigger voltage as low as 6.7 V and an ESD robustness exceeding 50 mA/μm, which enables effective ESD protection.Compared with the traditional medium-voltage-trigger thyristor(MVT thyristor), the new structure not only has a lower trigger voltage, but can also provide better ESD protection under both positive and negative ESD zapping conditions.展开更多
在TFT-LCD(Thin film transistor-liquid crystal display)行业中,进行摩擦工艺制程时,玻璃基板与机台接触、分离;摩擦辊与玻璃基板摩擦、摩擦机台顶针上升过程,都容易产生静电击穿。针对一款在摩擦工艺过程中产生静电的GOA(Gate driver...在TFT-LCD(Thin film transistor-liquid crystal display)行业中,进行摩擦工艺制程时,玻璃基板与机台接触、分离;摩擦辊与玻璃基板摩擦、摩擦机台顶针上升过程,都容易产生静电击穿。针对一款在摩擦工艺过程中产生静电的GOA(Gate driver on Array)产品,结合摩擦工艺参数、生产环境,进行了一系列静电相关验证。验证发现:摩擦工艺中摩擦布寿命、环境湿度对静电发生影响很大。摩擦布寿命越靠后,静电越容易发生;湿度越大,静电越不容易发生。摩擦机台顶针上升速度、摩擦布类型也对静电发生有一定影响,顶针缓慢上升,静电不容易发生;摩擦棉布较尼龙布静电效果相对较好。而针对摩擦工艺发生的静电失效不良,光配向替代是一种根本的解决方法,导入光配向工艺后,摩擦相关静电失效不良由量产6.8%下降为0%。展开更多
Electro-static discharge (ESD) is always a serious threat to integrated circuits. To achieve higher robustness and a smaller die area at the same time, a novel protection structure for the output pad is proposed. Th...Electro-static discharge (ESD) is always a serious threat to integrated circuits. To achieve higher robustness and a smaller die area at the same time, a novel protection structure for the output pad is proposed. The complementary SCR devices in this structure can protect not only the output under positive or negative stresses versus VDD or Vss, respectively, but also the power rails at the cost of almost no extra area. The robustness of the proposed structure is about three times higher than the conventional four-finger GGNMOS/GDPMOS structure in the same area condition.展开更多
To prevent the non-uniform conduction phenomenon caused by the Kirk effect in an NLDMOS under ESD stress, a novel NLDMOS structure is proposed. High electron injection current is the base of Kirk effect. Higher electr...To prevent the non-uniform conduction phenomenon caused by the Kirk effect in an NLDMOS under ESD stress, a novel NLDMOS structure is proposed. High electron injection current is the base of Kirk effect. Higher electron injection can makes the Kirk effect more serious and lead easily to the non-uniform conduction phenomenon. By splitting the drain N+ with the field oxide in the proposed structure, the crowded current can lead to a higher voltage drop on the ballast resistance. Therefore, the non-uniform conduction is suppressed, and its failure current is much improved.展开更多
文摘A novel polysilicon-assisted silicon-controlled rectifier (SCR) is presented and analyzed in this paper, which is fabricated in HHNEC's 0.18μm EEPROM process. The polysilicon-assisted SCRs take advantage of polysilicon layer to help bypass electro-static discharge (E S D) current without occupying extra layout area. TLP current-voltage (I-V) measurement results show that given the same layout areas, robustness performance of polysilicon-assisted SCRs can be improved to 3 times of conventional MLSCR's. Moreover, one-finger such polysilicon-assisted SCRs, which occupy only 947 [3mz layout area, can undergo 7-kV HBM ESD stress. Results further demonstrate that the S-type I-V characteristics of polysilicon-assisted SCRs are adjustable to different operating conditions by changing the device dimensions. Compared with traditional SCRs, this new SCR can bypass more ESD currents and consumes smaller IC area.
文摘摄像头模组主要由镜头、滤色片、音圈马达、马达驱动、图像传感器等部件构成。图像传感器和音圈马达驱动都是CMOS半导体器件,对ESD(Electro-Static Discharge)非常敏感。本文的主要内容包括以下几个方面:(1)摄像头模组的ESD保护设计,主要从结构设计和电子设计两个方面来阐述,结构设计时主要对ESD敏感区的保护;电子设计时主要是对CMOS芯片的接口引脚进行保护。(2)人体模型的研究,主要讨论HBM(Human Body Model)的仿真模型的创建。(3)静电释放的波形仿真和实验,主要讨论测试环境的建立,并对比目标和实际波形。
基金Project supported by the National Natural Science Foundation of China(Grant No.41304148)
文摘By using the pulsed laser single event effect facility and electro-static discharge (ESD) test system, the characteristics of the "high current", relation with external stimulus and relevance to impacted modes of single event latch-up (SEL) and transient-induced latch-up (TLU) are studied, respectively, for a 12-bit complementary metal--oxide semiconductor (CMOS) analog-to-digital converter. Furthermore, the sameness and difference in physical mechanism between "high current" induced by SEL and that by TLU are disclosed in this paper. The results show that the minority carrier diffusion in the PNPN structure of the CMOS device which initiates the active parasitic NPN and PNP transistors is the common reason for the "high current" induced by SEL and for that by TLU, However, for SEL, the minority carder diffusion is induced by the ionizing radiation, and an underdamped sinusoidal voltage on the supply node (the ground node) is the cause of the minority carrier diffusion for TLU.
文摘A new thyristor is proposed and realized in the foundry's 0.18-μm CMOS process for electrostatic dis-charge(ESD) protection.Without extra mask layers or process steps, the new ultra-low-voltage-trigger thyristor(ULVT thyristor) has a trigger voltage as low as 6.7 V and an ESD robustness exceeding 50 mA/μm, which enables effective ESD protection.Compared with the traditional medium-voltage-trigger thyristor(MVT thyristor), the new structure not only has a lower trigger voltage, but can also provide better ESD protection under both positive and negative ESD zapping conditions.
文摘在TFT-LCD(Thin film transistor-liquid crystal display)行业中,进行摩擦工艺制程时,玻璃基板与机台接触、分离;摩擦辊与玻璃基板摩擦、摩擦机台顶针上升过程,都容易产生静电击穿。针对一款在摩擦工艺过程中产生静电的GOA(Gate driver on Array)产品,结合摩擦工艺参数、生产环境,进行了一系列静电相关验证。验证发现:摩擦工艺中摩擦布寿命、环境湿度对静电发生影响很大。摩擦布寿命越靠后,静电越容易发生;湿度越大,静电越不容易发生。摩擦机台顶针上升速度、摩擦布类型也对静电发生有一定影响,顶针缓慢上升,静电不容易发生;摩擦棉布较尼龙布静电效果相对较好。而针对摩擦工艺发生的静电失效不良,光配向替代是一种根本的解决方法,导入光配向工艺后,摩擦相关静电失效不良由量产6.8%下降为0%。
基金supported by the National Natural Science Foundation of China(No.61274027)
文摘Electro-static discharge (ESD) is always a serious threat to integrated circuits. To achieve higher robustness and a smaller die area at the same time, a novel protection structure for the output pad is proposed. The complementary SCR devices in this structure can protect not only the output under positive or negative stresses versus VDD or Vss, respectively, but also the power rails at the cost of almost no extra area. The robustness of the proposed structure is about three times higher than the conventional four-finger GGNMOS/GDPMOS structure in the same area condition.
基金Project supported by the Important National S&T Special Project of China(No.2010ZX02201-003-002)
文摘To prevent the non-uniform conduction phenomenon caused by the Kirk effect in an NLDMOS under ESD stress, a novel NLDMOS structure is proposed. High electron injection current is the base of Kirk effect. Higher electron injection can makes the Kirk effect more serious and lead easily to the non-uniform conduction phenomenon. By splitting the drain N+ with the field oxide in the proposed structure, the crowded current can lead to a higher voltage drop on the ballast resistance. Therefore, the non-uniform conduction is suppressed, and its failure current is much improved.