An electrochemical sensor for doxycycline hyclate(DC)detection with high sensitivity and good selectivity is reported.The sensor was fabricated by electro-polymerization of molecularly imprinted polymers(MIPs)in the p...An electrochemical sensor for doxycycline hyclate(DC)detection with high sensitivity and good selectivity is reported.The sensor was fabricated by electro-polymerization of molecularly imprinted polymers(MIPs)in the presence of DC onto multi-walled carbon nanotubes modified glassy carbon electrode(MWCNTs/GCE).The MWCNTs can significantly increase the current response of the sensor,leading to enhanced sensitivity.The MIPs provide selective recognition sites for DC detection.The experimental parameters,such as the polymer monomer concentration,supporting electrolyte pH,the time for electro-polymerization and the incubation time of the sensor with DC were optimized.Under optimized experimental conditions,the sensor displayed a linear range of 0.05μmol/L-0.5μmol/L towards DC detection,with the detection limit of 1.3×10^-2μmol/L.The sensor was successfully applied for recovery test of DC in human serum samples.展开更多
Treatments of estrogens such as Estrone (El), Estradiol (E2) and Ethinylestradiol (EE2) were conducted using an electrolytic reactor equipped with multi-packed granular glassy carbon electrodes. Experimental res...Treatments of estrogens such as Estrone (El), Estradiol (E2) and Ethinylestradiol (EE2) were conducted using an electrolytic reactor equipped with multi-packed granular glassy carbon electrodes. Experimental results showed that El, E2 and EE2 were oxidized in the range of 0.45-0.85 V and were removed through electro-polymerization. Observed data from continuous experiments were in good agreement with calculated results by a mathematical model constructed based on mass transfer limitation. In continuous treatment of trace estrogens (1 μg/L), 98% of El, E2 and EE2 were stably removed. At high loading rate (100 μg/L), removal efficiency of E1 was kept around 74%-88% for 21 days, but removal efficiency reduced due to passivation of electrodes. However, removal efficiency was recovered after electrochemical regeneration of electrodes in presence of ozone. Electric energy consumption was observed in the range of 1-2 Wh/m3. From these results, we concluded that the present electrochemical process would be an alternative removal of estrogens.展开更多
The electro-polymerization behavior of aniline in reverse(W/O) microemulsion was investigated. The experiment results show that the cyclic voltammetry polymerization behavior of aniline in W/O microemulsion is differe...The electro-polymerization behavior of aniline in reverse(W/O) microemulsion was investigated. The experiment results show that the cyclic voltammetry polymerization behavior of aniline in W/O microemulsion is different from that in aqueous solution remarkably. With the increase of scan cycle, the oxidation potential shifts positively and the reduction potential shifts negatively, i.e., the redox potential difference increases. H+ apparent concentration affects the aniline polymerization evidently. When H+ concentration is lower than 0.08 mol/L, the electro-polymerization of aniline is difficult. With the increase of H+ concentration, the polymerization current of aniline increases gradually. Only when H+ concentration is high enough(0.5 mol/L), aniline can be well electro-polymerized. Moreover, under the same condition, the aniline polymerization current in W/O microemulsion is higher than that in aqueous solution. The scanning electron microscopy image shows that the deposited polyaniline(PANI) has uniform fiber morphology with diameter of about 100 nm. Further study result suggests that the electrochemical activity of the PANI in HCl is similar to that of the PANI prepared in aqueous solution.展开更多
Temperature effect on the nucleation and growth mechanisms (NGM) of poly(thiophene) (PTh) was investigated through experimental and computational tools. The computational simulation method was based on a kinetic Monte...Temperature effect on the nucleation and growth mechanisms (NGM) of poly(thiophene) (PTh) was investigated through experimental and computational tools. The computational simulation method was based on a kinetic Monte Carlo algorithm. It reproduced key processes such as diffusion, oligomerization, and the precipitation of oligomers onto the electrode surface. Electrochemical synthesis conditions at temperatures between 263 and 303 K were optimized. The deconvolution of the i-t transients reflected two contributions: a progressive nucleation with three-dimensional growth controlled by diffusion and the other by charge transfer, PN3Ddif and PN3Dct, respectively. As temperature decreased, a diminution of the charge associated to each contribution was observed and the nucleation induction time increased. Experimental and computational evidence indicated that temperature does not change the nucleation and growth mechanism (NGM). This effect was ascribed to kinetic factors rather than to film conductivity. This work contrasts simulation and experimental evidence and demonstrates how computational simulations can help to understand the electrochemical process of conducting polymers formation.展开更多
基金financially supported by the National Natural Science Foundation of China (No.21575165)
文摘An electrochemical sensor for doxycycline hyclate(DC)detection with high sensitivity and good selectivity is reported.The sensor was fabricated by electro-polymerization of molecularly imprinted polymers(MIPs)in the presence of DC onto multi-walled carbon nanotubes modified glassy carbon electrode(MWCNTs/GCE).The MWCNTs can significantly increase the current response of the sensor,leading to enhanced sensitivity.The MIPs provide selective recognition sites for DC detection.The experimental parameters,such as the polymer monomer concentration,supporting electrolyte pH,the time for electro-polymerization and the incubation time of the sensor with DC were optimized.Under optimized experimental conditions,the sensor displayed a linear range of 0.05μmol/L-0.5μmol/L towards DC detection,with the detection limit of 1.3×10^-2μmol/L.The sensor was successfully applied for recovery test of DC in human serum samples.
基金supported in part by the Grant-in-Aid for Scientific Research (B) (No. 24360219)the Ministry of Education, Culture, Sports, Science and Technology (MEXT)Waseda University Grants for Special Research Project (No. 2013A-887)
文摘Treatments of estrogens such as Estrone (El), Estradiol (E2) and Ethinylestradiol (EE2) were conducted using an electrolytic reactor equipped with multi-packed granular glassy carbon electrodes. Experimental results showed that El, E2 and EE2 were oxidized in the range of 0.45-0.85 V and were removed through electro-polymerization. Observed data from continuous experiments were in good agreement with calculated results by a mathematical model constructed based on mass transfer limitation. In continuous treatment of trace estrogens (1 μg/L), 98% of El, E2 and EE2 were stably removed. At high loading rate (100 μg/L), removal efficiency of E1 was kept around 74%-88% for 21 days, but removal efficiency reduced due to passivation of electrodes. However, removal efficiency was recovered after electrochemical regeneration of electrodes in presence of ozone. Electric energy consumption was observed in the range of 1-2 Wh/m3. From these results, we concluded that the present electrochemical process would be an alternative removal of estrogens.
基金Projects(51071067,21271069,20673036,J1210040,50473022) supported by National Natural Science Foundation of ChinaProject(2013GK3015) supported by the Science and Technology Program of Hunan Province,China
文摘The electro-polymerization behavior of aniline in reverse(W/O) microemulsion was investigated. The experiment results show that the cyclic voltammetry polymerization behavior of aniline in W/O microemulsion is different from that in aqueous solution remarkably. With the increase of scan cycle, the oxidation potential shifts positively and the reduction potential shifts negatively, i.e., the redox potential difference increases. H+ apparent concentration affects the aniline polymerization evidently. When H+ concentration is lower than 0.08 mol/L, the electro-polymerization of aniline is difficult. With the increase of H+ concentration, the polymerization current of aniline increases gradually. Only when H+ concentration is high enough(0.5 mol/L), aniline can be well electro-polymerized. Moreover, under the same condition, the aniline polymerization current in W/O microemulsion is higher than that in aqueous solution. The scanning electron microscopy image shows that the deposited polyaniline(PANI) has uniform fiber morphology with diameter of about 100 nm. Further study result suggests that the electrochemical activity of the PANI in HCl is similar to that of the PANI prepared in aqueous solution.
基金M.R.is grateful to CONICYT for a Ph.D.fellowship(grant nº57090050)M.B.C.acknowledges Innova-Chile-CORFO(Project Code#09CEII-6991) M.A.del V.acknowledges FONDECYT grant nº1100055,for the financial support.
文摘Temperature effect on the nucleation and growth mechanisms (NGM) of poly(thiophene) (PTh) was investigated through experimental and computational tools. The computational simulation method was based on a kinetic Monte Carlo algorithm. It reproduced key processes such as diffusion, oligomerization, and the precipitation of oligomers onto the electrode surface. Electrochemical synthesis conditions at temperatures between 263 and 303 K were optimized. The deconvolution of the i-t transients reflected two contributions: a progressive nucleation with three-dimensional growth controlled by diffusion and the other by charge transfer, PN3Ddif and PN3Dct, respectively. As temperature decreased, a diminution of the charge associated to each contribution was observed and the nucleation induction time increased. Experimental and computational evidence indicated that temperature does not change the nucleation and growth mechanism (NGM). This effect was ascribed to kinetic factors rather than to film conductivity. This work contrasts simulation and experimental evidence and demonstrates how computational simulations can help to understand the electrochemical process of conducting polymers formation.