针对未知的污染场地,为了准确估计污染物运移模型的参数,提出一种基于多重数据同化集合平滑器(ensemble smoother with multiple data assimilation,ES-MDA)算法的地下水模型参数反演方法,通过融合由高密度电阻率(electrical resistance...针对未知的污染场地,为了准确估计污染物运移模型的参数,提出一种基于多重数据同化集合平滑器(ensemble smoother with multiple data assimilation,ES-MDA)算法的地下水模型参数反演方法,通过融合由高密度电阻率(electrical resistance tomography,ERT)法采集的ERT观测数据,实现对污染源源强和渗透系数场的联合反演。以此为基础设计3组数值算例,比较不同类型观测数据对反演精度的影响。研究结果表明:融合ERT数据的ES-MDA算法对模型参数的反演精度更高,并且将ERT数据和传统的质量浓度与水头观测数据相结合,能进一步优化反演结果。展开更多
文摘针对未知的污染场地,为了准确估计污染物运移模型的参数,提出一种基于多重数据同化集合平滑器(ensemble smoother with multiple data assimilation,ES-MDA)算法的地下水模型参数反演方法,通过融合由高密度电阻率(electrical resistance tomography,ERT)法采集的ERT观测数据,实现对污染源源强和渗透系数场的联合反演。以此为基础设计3组数值算例,比较不同类型观测数据对反演精度的影响。研究结果表明:融合ERT数据的ES-MDA算法对模型参数的反演精度更高,并且将ERT数据和传统的质量浓度与水头观测数据相结合,能进一步优化反演结果。