文章以电动助力转向系统(electric power steering,EPS)硬件在环试验台为研究对象,对传统方法中使用二自由度车辆模型建立的试验台进行了介绍,并提出采用CarSim软件提供的二十七自由度车辆模型建立硬件在环试验台。基于CarSim软件建立...文章以电动助力转向系统(electric power steering,EPS)硬件在环试验台为研究对象,对传统方法中使用二自由度车辆模型建立的试验台进行了介绍,并提出采用CarSim软件提供的二十七自由度车辆模型建立硬件在环试验台。基于CarSim软件建立的试验台使用Labview软件并以PXI实时系统为运行环境,采用伺服电机模拟转向阻力矩。试验结果表明,该试验台有更好的试验效果,可以模拟出车辆在不同工况下运行的自回正效果,为EPS控制策略开发提供了良好的试验平台。展开更多
Pressure ripples in electric power steering (EPS) systems can be caused by the phase lag between the driver s steering torque and steer angle, the nonlinear frictions, and the disturbances from road and sensor noise...Pressure ripples in electric power steering (EPS) systems can be caused by the phase lag between the driver s steering torque and steer angle, the nonlinear frictions, and the disturbances from road and sensor noise especially during high-frequency maneuvers. This paper investigates the use of the robust fuzzy control method for actively reducing pressure ripples for EPS systems. Remarkable progress on steering maneuverability is achieved. The EPS dynamics is described with an eight-order nonlinear state-space model and approximated by a Takagi-Sugeno (T-S) fuzzy model with time-varying delays and external disturbances. A stabilization approach is then presented for nonlinear time-delay systems through fuzzy state feedback controller in parallel distributed compensation (PDC) structure. The closed-loop stability conditions of EPS system with the fuzzy controller are parameterized in terms of the linear matrix inequality (LMI) problem. Simulations and experiments using the proposed robust fuzzy controller and traditional PID controller have been carried out for EPS systems. Both the simulation and experiment results show that the proposed fuzzy controller can reduce the torque ripples and allow us to have a good steering feeling and stable driving.展开更多
文摘文章以电动助力转向系统(electric power steering,EPS)硬件在环试验台为研究对象,对传统方法中使用二自由度车辆模型建立的试验台进行了介绍,并提出采用CarSim软件提供的二十七自由度车辆模型建立硬件在环试验台。基于CarSim软件建立的试验台使用Labview软件并以PXI实时系统为运行环境,采用伺服电机模拟转向阻力矩。试验结果表明,该试验台有更好的试验效果,可以模拟出车辆在不同工况下运行的自回正效果,为EPS控制策略开发提供了良好的试验平台。
基金supported Foundation of National Development and Reform Commission of China (No. 2040)
文摘Pressure ripples in electric power steering (EPS) systems can be caused by the phase lag between the driver s steering torque and steer angle, the nonlinear frictions, and the disturbances from road and sensor noise especially during high-frequency maneuvers. This paper investigates the use of the robust fuzzy control method for actively reducing pressure ripples for EPS systems. Remarkable progress on steering maneuverability is achieved. The EPS dynamics is described with an eight-order nonlinear state-space model and approximated by a Takagi-Sugeno (T-S) fuzzy model with time-varying delays and external disturbances. A stabilization approach is then presented for nonlinear time-delay systems through fuzzy state feedback controller in parallel distributed compensation (PDC) structure. The closed-loop stability conditions of EPS system with the fuzzy controller are parameterized in terms of the linear matrix inequality (LMI) problem. Simulations and experiments using the proposed robust fuzzy controller and traditional PID controller have been carried out for EPS systems. Both the simulation and experiment results show that the proposed fuzzy controller can reduce the torque ripples and allow us to have a good steering feeling and stable driving.