The three-dimensional instability of an electrically conducting fluid between two parallel plates affected by an imposed transversal magnetic field is numerically investigated by a Chebyshev collocation method. The QZ...The three-dimensional instability of an electrically conducting fluid between two parallel plates affected by an imposed transversal magnetic field is numerically investigated by a Chebyshev collocation method. The QZ method is utilized to obtain neutral curves of the linear instability. The details of instability are analyzed by solving the generalized Orr-Sommerfeld equation. The critical Reynolds number Rec, the stream-wise and span-wise critical wave numbers αc and βc are obtained for a wide range of Hartmann number Ha. The effects of Lorentz force and span-wise perturbation on three-dimensional instability are investigated. The results show that magnetic field would suppress the instability and critical Reynolds number tends to be larger than that for two-dimensional instability.展开更多
This work reports the effects of magnetic field on an electrically conducting fluid with low electrical conductivity flowing in a smooth expanded channel. The governing nonlinear magnetohydrodynamic (MHD) equations ...This work reports the effects of magnetic field on an electrically conducting fluid with low electrical conductivity flowing in a smooth expanded channel. The governing nonlinear magnetohydrodynamic (MHD) equations in induction- free situations are derived in the framework of MHD approximations and solved numerically using the finite-difference technique. The critical values of Reynolds number (based on upstream mean velocity and channel height) for symmetry breaking bifurcation for a sudden expansion channel (1:4) is about 36, whereas the value in the case of the smooth expansion geometry used in this work is obtained as 298, approximately (non-magnetic case). The flow of an electrically conducting fluid in the presence of an externally applied constant magnetic field perpendicular to the plane of the flow is reduced significantly depending on the magnetic parameter (M). It is expansion (1:4) is about 475 for the magnetic parameter M found that the critical value of Reynolds number for smooth = 2. The separating regions developed behind the smooth symmetric expansion are decreased in length for increasing values of the magnetic parameter. The bifurcation diagram is shown for a symmetric smoothly expanding channel. It is noted that the critical values of Reynolds number increase with increasing magnetic field strength.展开更多
基金supported by National Natural Science Foundation of China(Nos.50936066,11125212)973 ITER Project(No.2013GB114001)
文摘The three-dimensional instability of an electrically conducting fluid between two parallel plates affected by an imposed transversal magnetic field is numerically investigated by a Chebyshev collocation method. The QZ method is utilized to obtain neutral curves of the linear instability. The details of instability are analyzed by solving the generalized Orr-Sommerfeld equation. The critical Reynolds number Rec, the stream-wise and span-wise critical wave numbers αc and βc are obtained for a wide range of Hartmann number Ha. The effects of Lorentz force and span-wise perturbation on three-dimensional instability are investigated. The results show that magnetic field would suppress the instability and critical Reynolds number tends to be larger than that for two-dimensional instability.
基金support by the UGC(SAP),DSA-I in the Mathematics Department,Burdwan University,India
文摘This work reports the effects of magnetic field on an electrically conducting fluid with low electrical conductivity flowing in a smooth expanded channel. The governing nonlinear magnetohydrodynamic (MHD) equations in induction- free situations are derived in the framework of MHD approximations and solved numerically using the finite-difference technique. The critical values of Reynolds number (based on upstream mean velocity and channel height) for symmetry breaking bifurcation for a sudden expansion channel (1:4) is about 36, whereas the value in the case of the smooth expansion geometry used in this work is obtained as 298, approximately (non-magnetic case). The flow of an electrically conducting fluid in the presence of an externally applied constant magnetic field perpendicular to the plane of the flow is reduced significantly depending on the magnetic parameter (M). It is expansion (1:4) is about 475 for the magnetic parameter M found that the critical value of Reynolds number for smooth = 2. The separating regions developed behind the smooth symmetric expansion are decreased in length for increasing values of the magnetic parameter. The bifurcation diagram is shown for a symmetric smoothly expanding channel. It is noted that the critical values of Reynolds number increase with increasing magnetic field strength.