As power to gas(P2 G) technology gradually matures, the coupling between electricity networks and natural gas networks should ideally evolve synergistically.With the intent of characterizing market behaviors of integr...As power to gas(P2 G) technology gradually matures, the coupling between electricity networks and natural gas networks should ideally evolve synergistically.With the intent of characterizing market behaviors of integrated electric power and natural gas networks(IPGNs)with P2 G facilities, this paper establishes a steady-state model of P2 G and constructs optimal dispatch models of an electricity network and a natural gas network separately. In addition, a concept of slack energy flow(SEF) is proposed as a tool for coordinated optimal dispatch between the two networks. To study how the market pricing mechanism affects coordinated optimal dispatch in an IPGN, a market equilibrium-solving model for an IPGN is constructed according to game theory, with a solution based on the Nikaido-Isoda function. Case studies are conducted on a joint model that combines the modified IEEE 118-node electricity network and the Belgian 20-node gas network.The results show that if the game between an electric power company and a natural gas company reaches market equilibrium, not only can both companies maximize their profits, but also the coordinated operation of the coupling units, i.e., gas turbines and P2 G facilities, will contribute more to renewable energy utilization and carbon emission reduction.展开更多
Based on the large-scale penetration of electric vehicles(EV)into the building cluster,a multi-objective optimal strategy considering the coordinated dispatch of EV is proposed,for improving the safe and economical op...Based on the large-scale penetration of electric vehicles(EV)into the building cluster,a multi-objective optimal strategy considering the coordinated dispatch of EV is proposed,for improving the safe and economical operation problems of distribution network.The system power loss and node voltage excursion can be effectively reduced,by taking measures of time-of-use(TOU)price mechanism bonded with the reactive compensation of energy storage devices.Firstly,the coordinate charging/discharging load model for EV has been established,to obtain a narrowed gap between load peak and valley.Next,a multi-objective optimization model of the distribution grid is also defined,and the active power loss and node voltage fluctuation are chosen to be the objective function.For improving the efficiency of optimization process,an advanced genetic algorithm associated with elite preservation policy is used.Finally,reactive compensation capacity supplied by capacitor banks is dynamically determined according to the varying building loads.The proposed strategy is demonstrated on the IEEE 33-node test case,and the simulation results show that the power supply pressure can be obviously relieved by introducing the coordinated charging/discharging behavior of EV;in the meantime,via reasonable planning of the compensation capacitor,the remarkably lower active power loss and voltage excursion can be realized,ensuring the safe and economical operation of the distribution system.展开更多
Coal-fired utility boilers are now identified as the largest source of mercury in the United States. There is speculation that the installation of selective catalytic reduction (SCR) system for reduction of NOx can ...Coal-fired utility boilers are now identified as the largest source of mercury in the United States. There is speculation that the installation of selective catalytic reduction (SCR) system for reduction of NOx can also prompt the oxidation and removal of mercury. In this paper, tests at six full-scale power plants with similar type of the SCR systems are conducted to investigate the effect of the SCR on the transformation of mercury speciation. The results show that the SCR system can achieve more than 70%-80% oxidation of elemental mercury and enhance the mercury removal ability in these units. The oxidation of elemental mercury in the SCR system strongly depends on the coal properties and the operation conditions of the SCR systems. The content of chloride in the coal is the key factor for the oxidization process and the maximum oxidation of elemental mercury is found when chloride content changes from 400 to 600 ppm. The sulfur content is no significant impact on oxidation of elemental mercury.展开更多
What needs to be developed from the concept of"Smart Grid"is that:when renewable energy sources are absolutely prevailing in power generation,distributed power generation and distributed energy storage syste...What needs to be developed from the concept of"Smart Grid"is that:when renewable energy sources are absolutely prevailing in power generation,distributed power generation and distributed energy storage systems are widespread across the grid,and electric vehicle charging loads are prevailing in power load demands,how can the power grid support electric power as a core secondary energy source,undertake the role of a bridge between primary energy and end-use energy,and achieve the coordination and the optimization in macro energy perspective;how to guarantee the security of both macro energy and environment as well as the reliability of electricity.If a new term is needed,it should be Comprehensive Energy Network,not Energy Internet.展开更多
For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. A...For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. And direct yaw-moment control(DYC) has been widely studied and applied to vehicle stability control. Good vehicle handling performance: quick yaw rate transient response, small overshoot, high steady yaw rate gain, etc, is required by drivers under normal conditions, which is less concerned, however. Based on the hierarchical control methodology, a novel control system using direct yaw moment control for improving handling performance of a distributed drive electric vehicle especially under normal driving conditions has been proposed. The upper-loop control system consists of two parts: a state feedback controller, which aims to realize the ideal transient response of yaw rate, with a vehicle sideslip angle observer; and a steering wheel angle feedforward controller designed to achieve a desired yaw rate steady gain. Under the restriction of the effect of poles and zeros in the closed-loop transfer function on the system response and the capacity of in-wheel motors, the integrated time and absolute error(ITAE) function is utilized as the cost function in the optimal control to calculate the ideal eigen frequency and damper coefficient of the system and obtain optimal feedback matrix and feedforward matrix. Simulations and experiments with a DDEV under multiple maneuvers are carried out and show the effectiveness of the proposed method: yaw rate rising time is reduced, steady yaw rate gain is increased, vehicle steering characteristic is close to neutral steer and drivers burdens are also reduced. The control system improves vehicle handling performance under normal conditions in both transient and steady response. State feedback control instead of model following control is introduced in the control system so that the sense of control intervention to drivers is relieved.展开更多
Wind field is one of the important factors affecting the distribution characteristics of aerial spraying droplet deposition.In order to reveal the impact mechanism of droplet deposition distribution by the wind field ...Wind field is one of the important factors affecting the distribution characteristics of aerial spraying droplet deposition.In order to reveal the impact mechanism of droplet deposition distribution by the wind field below agricultural unmanned helicopter rotor,in this study,the wind field distribution below uniaxial single-rotor electric unmanned helicopter rotor was measured by using a wireless wind speed sensor network measurement system for unmanned helicopter.The effects of wind field in three directions(X,Y,Z)below the rotor on droplet deposition distribution were analyzed with the condition of aerial spraying droplet deposition in rice canopy,and the regression model was established via variance and regression analyses of experiment results.The results showed that,the wind field in Y direction had a significant effect on droplet deposition in effective spray area,the wind field in Z direction had an extremely significant effect on droplet deposition in effective spray area,and the corresponding significance(sig.)values were 0.011 and 0.000.Furthermore,the wind field in Z direction had a significant effect on the penetrability and uniformity of droplet deposition in effective spray area,the corresponding sig.values were 0.025 and 0.011 respectively.The wind speed in Y direction at the edge of effective spray area had a significant effect on droplet drift,the sig.value was 0.021.In addition,the correlation coefficient R of the regression model was 0.869 between droplet deposition in effective spray area and the wind speed in Y and Z directions,and 0.915 between the uniformity of droplet deposition in effective spray area and the maximum wind speed in Z direction.The result revealed the influencing mechanism of the wind field below the rotor of uniaxial single-rotor electric unmanned helicopter on the distribution of aerial spraying droplet deposition.The results can provide guidance for the actual production application of aerial spraying to reduce liquid drift and improve the utilization rate of pesticide.展开更多
With the intensifying energy crisis and environmental pollution, the Energy Internet and corresponding patterns of energy use have been attracting more and more attention. In this paper, the basic concept and characte...With the intensifying energy crisis and environmental pollution, the Energy Internet and corresponding patterns of energy use have been attracting more and more attention. In this paper, the basic concept and characteristics of the Energy Internet are summarized, and its basic structural framework is analyzed in detail. On this basis,couplings between the electric power system and other systems such as the cooling and heating system, the natural gas system, and the traffic system are analyzed, and the operation and planning of integrated energy systems in both deterministic and uncertain environments are comprehensively reviewed. Finally, the research prospects and main technical challenges of the Energy Internet are discussed.展开更多
Electric power consumption (EPC) is one of the basic indices for evaluating electric power use. Obtaining timely and accurate data on the spatiotemporal dynamics of EPC is crucial for understanding and practical dep...Electric power consumption (EPC) is one of the basic indices for evaluating electric power use. Obtaining timely and accurate data on the spatiotemporal dynamics of EPC is crucial for understanding and practical deployment of electric power resources. In this study, an EPC model was developed using stable nighttime lights time-series data from the Defense Meteorological Satellite Program Operational Linescan System (DMSP/OLS). The model was used to reconstruct the spatial patterns of EPC in Chinese Mainland at the county level from 1995 to 2008. In addition, the spatiotemporal dynamics of EPC were analyzed, and the fol-lowing conclusions were drawn. (1) The EPC model reliably represented the spatiotemporal dynamics of EPC in Chinese Mainland with approximately 70% accuracy. (2) The EPC in most regions of Chinese Mainland was at low to moderate levels, with marked temporal and spatial variations; of high-level EPC, 58.26% was concentrated in eastern China. Six urban agglomerations (Beijing-Tianjin-Tangshan region, Shanghai-Nanjing-Hangzhou region, Pearl River Delta, Shandong Peninsula, middle-south of Liaoning Province, and Sichuan Basin) accounted for 10.69% of the total area of Chinese Mainland but consumed 39.23% of the electricity. (3) The EPC of most regions in Chinese Mainland increased from 1995 to 2008, and 64% of the mainland area showed a significant increase in EPC. Moderate increases in EPC were found in 61.62% of eastern China and 80.65% of central China from 1995 to 2008, whereas 75.69% of western China showed no significant increase in EPC. Meanwhile, 77.27%, 89.35%, and 66.72% of the Shanghai-Nanjing-Hangzhou region, Pearl River Delta, and Shandong Peninsula, respectively, showed high-speed increases in EPC. Moderate increases in EPC occurred in 71.12% and 72.13% of the Beijing-Tianjin-Tangshan region and middle-south of Liaoning Province, respectively, while no significant increase occurred in 56.34% of the Sichuan Basin.展开更多
基金supported by the National Natural Science Foundation of China(No.51377060)the Major Consulting Program of Chinese Academy of Engineering(No.2015-ZD-09-09)
文摘As power to gas(P2 G) technology gradually matures, the coupling between electricity networks and natural gas networks should ideally evolve synergistically.With the intent of characterizing market behaviors of integrated electric power and natural gas networks(IPGNs)with P2 G facilities, this paper establishes a steady-state model of P2 G and constructs optimal dispatch models of an electricity network and a natural gas network separately. In addition, a concept of slack energy flow(SEF) is proposed as a tool for coordinated optimal dispatch between the two networks. To study how the market pricing mechanism affects coordinated optimal dispatch in an IPGN, a market equilibrium-solving model for an IPGN is constructed according to game theory, with a solution based on the Nikaido-Isoda function. Case studies are conducted on a joint model that combines the modified IEEE 118-node electricity network and the Belgian 20-node gas network.The results show that if the game between an electric power company and a natural gas company reaches market equilibrium, not only can both companies maximize their profits, but also the coordinated operation of the coupling units, i.e., gas turbines and P2 G facilities, will contribute more to renewable energy utilization and carbon emission reduction.
基金supported by Natural Science Foundation of Hunan Province(2017JJ5044).
文摘Based on the large-scale penetration of electric vehicles(EV)into the building cluster,a multi-objective optimal strategy considering the coordinated dispatch of EV is proposed,for improving the safe and economical operation problems of distribution network.The system power loss and node voltage excursion can be effectively reduced,by taking measures of time-of-use(TOU)price mechanism bonded with the reactive compensation of energy storage devices.Firstly,the coordinate charging/discharging load model for EV has been established,to obtain a narrowed gap between load peak and valley.Next,a multi-objective optimization model of the distribution grid is also defined,and the active power loss and node voltage fluctuation are chosen to be the objective function.For improving the efficiency of optimization process,an advanced genetic algorithm associated with elite preservation policy is used.Finally,reactive compensation capacity supplied by capacitor banks is dynamically determined according to the varying building loads.The proposed strategy is demonstrated on the IEEE 33-node test case,and the simulation results show that the power supply pressure can be obviously relieved by introducing the coordinated charging/discharging behavior of EV;in the meantime,via reasonable planning of the compensation capacitor,the remarkably lower active power loss and voltage excursion can be realized,ensuring the safe and economical operation of the distribution system.
基金Project supported by the National Basic Research Program (973) of China (No. 2006CB2003)the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Personnel Ministry.
文摘Coal-fired utility boilers are now identified as the largest source of mercury in the United States. There is speculation that the installation of selective catalytic reduction (SCR) system for reduction of NOx can also prompt the oxidation and removal of mercury. In this paper, tests at six full-scale power plants with similar type of the SCR systems are conducted to investigate the effect of the SCR on the transformation of mercury speciation. The results show that the SCR system can achieve more than 70%-80% oxidation of elemental mercury and enhance the mercury removal ability in these units. The oxidation of elemental mercury in the SCR system strongly depends on the coal properties and the operation conditions of the SCR systems. The content of chloride in the coal is the key factor for the oxidization process and the maximum oxidation of elemental mercury is found when chloride content changes from 400 to 600 ppm. The sulfur content is no significant impact on oxidation of elemental mercury.
基金This work is supported by National High Technology Research and Development Program of China(863 Program)(No.2011AA05A105)and SGCC Projects.
文摘What needs to be developed from the concept of"Smart Grid"is that:when renewable energy sources are absolutely prevailing in power generation,distributed power generation and distributed energy storage systems are widespread across the grid,and electric vehicle charging loads are prevailing in power load demands,how can the power grid support electric power as a core secondary energy source,undertake the role of a bridge between primary energy and end-use energy,and achieve the coordination and the optimization in macro energy perspective;how to guarantee the security of both macro energy and environment as well as the reliability of electricity.If a new term is needed,it should be Comprehensive Energy Network,not Energy Internet.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2011CB711200)National Science and Technology Support Program of China(Grant No.2015BAG17B00)National Natural Science Foundation of China(Grant No.51475333)
文摘For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. And direct yaw-moment control(DYC) has been widely studied and applied to vehicle stability control. Good vehicle handling performance: quick yaw rate transient response, small overshoot, high steady yaw rate gain, etc, is required by drivers under normal conditions, which is less concerned, however. Based on the hierarchical control methodology, a novel control system using direct yaw moment control for improving handling performance of a distributed drive electric vehicle especially under normal driving conditions has been proposed. The upper-loop control system consists of two parts: a state feedback controller, which aims to realize the ideal transient response of yaw rate, with a vehicle sideslip angle observer; and a steering wheel angle feedforward controller designed to achieve a desired yaw rate steady gain. Under the restriction of the effect of poles and zeros in the closed-loop transfer function on the system response and the capacity of in-wheel motors, the integrated time and absolute error(ITAE) function is utilized as the cost function in the optimal control to calculate the ideal eigen frequency and damper coefficient of the system and obtain optimal feedback matrix and feedforward matrix. Simulations and experiments with a DDEV under multiple maneuvers are carried out and show the effectiveness of the proposed method: yaw rate rising time is reduced, steady yaw rate gain is increased, vehicle steering characteristic is close to neutral steer and drivers burdens are also reduced. The control system improves vehicle handling performance under normal conditions in both transient and steady response. State feedback control instead of model following control is introduced in the control system so that the sense of control intervention to drivers is relieved.
基金the National Key Technologies Research and Development Program(2016YFD0200700)Guangdong National Natural Science Foundation of China(2015A030313420).
文摘Wind field is one of the important factors affecting the distribution characteristics of aerial spraying droplet deposition.In order to reveal the impact mechanism of droplet deposition distribution by the wind field below agricultural unmanned helicopter rotor,in this study,the wind field distribution below uniaxial single-rotor electric unmanned helicopter rotor was measured by using a wireless wind speed sensor network measurement system for unmanned helicopter.The effects of wind field in three directions(X,Y,Z)below the rotor on droplet deposition distribution were analyzed with the condition of aerial spraying droplet deposition in rice canopy,and the regression model was established via variance and regression analyses of experiment results.The results showed that,the wind field in Y direction had a significant effect on droplet deposition in effective spray area,the wind field in Z direction had an extremely significant effect on droplet deposition in effective spray area,and the corresponding significance(sig.)values were 0.011 and 0.000.Furthermore,the wind field in Z direction had a significant effect on the penetrability and uniformity of droplet deposition in effective spray area,the corresponding sig.values were 0.025 and 0.011 respectively.The wind speed in Y direction at the edge of effective spray area had a significant effect on droplet drift,the sig.value was 0.021.In addition,the correlation coefficient R of the regression model was 0.869 between droplet deposition in effective spray area and the wind speed in Y and Z directions,and 0.915 between the uniformity of droplet deposition in effective spray area and the maximum wind speed in Z direction.The result revealed the influencing mechanism of the wind field below the rotor of uniaxial single-rotor electric unmanned helicopter on the distribution of aerial spraying droplet deposition.The results can provide guidance for the actual production application of aerial spraying to reduce liquid drift and improve the utilization rate of pesticide.
基金supported in part by the National Natural Science Foundation of China(No.51520105011)part by the Key S&T Special Project of Hunan Province of China(No.2015GK1002)part by the Science and Technology Project of Hunan Province of China(No.2015WK3002)
文摘With the intensifying energy crisis and environmental pollution, the Energy Internet and corresponding patterns of energy use have been attracting more and more attention. In this paper, the basic concept and characteristics of the Energy Internet are summarized, and its basic structural framework is analyzed in detail. On this basis,couplings between the electric power system and other systems such as the cooling and heating system, the natural gas system, and the traffic system are analyzed, and the operation and planning of integrated energy systems in both deterministic and uncertain environments are comprehensively reviewed. Finally, the research prospects and main technical challenges of the Energy Internet are discussed.
基金The National Basic Research Program of China,No.2010CB950901 National Natural Science Foundation of China,No.40971059
文摘Electric power consumption (EPC) is one of the basic indices for evaluating electric power use. Obtaining timely and accurate data on the spatiotemporal dynamics of EPC is crucial for understanding and practical deployment of electric power resources. In this study, an EPC model was developed using stable nighttime lights time-series data from the Defense Meteorological Satellite Program Operational Linescan System (DMSP/OLS). The model was used to reconstruct the spatial patterns of EPC in Chinese Mainland at the county level from 1995 to 2008. In addition, the spatiotemporal dynamics of EPC were analyzed, and the fol-lowing conclusions were drawn. (1) The EPC model reliably represented the spatiotemporal dynamics of EPC in Chinese Mainland with approximately 70% accuracy. (2) The EPC in most regions of Chinese Mainland was at low to moderate levels, with marked temporal and spatial variations; of high-level EPC, 58.26% was concentrated in eastern China. Six urban agglomerations (Beijing-Tianjin-Tangshan region, Shanghai-Nanjing-Hangzhou region, Pearl River Delta, Shandong Peninsula, middle-south of Liaoning Province, and Sichuan Basin) accounted for 10.69% of the total area of Chinese Mainland but consumed 39.23% of the electricity. (3) The EPC of most regions in Chinese Mainland increased from 1995 to 2008, and 64% of the mainland area showed a significant increase in EPC. Moderate increases in EPC were found in 61.62% of eastern China and 80.65% of central China from 1995 to 2008, whereas 75.69% of western China showed no significant increase in EPC. Meanwhile, 77.27%, 89.35%, and 66.72% of the Shanghai-Nanjing-Hangzhou region, Pearl River Delta, and Shandong Peninsula, respectively, showed high-speed increases in EPC. Moderate increases in EPC occurred in 71.12% and 72.13% of the Beijing-Tianjin-Tangshan region and middle-south of Liaoning Province, respectively, while no significant increase occurred in 56.34% of the Sichuan Basin.